Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images

  • Conference paper
Combinatorial Image Analysis (IWCIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4040))

Included in the following conference series:

Abstract

In this paper, we show how to use the three dimensional topological map in order to compute efficiently topological features on objects contained in a 3D image. These features are useful for example in image processing to control operations or in computer vision to characterize objects. Topological map is a combinatorial model which represents both topological and geometrical information of a three dimensional labeled image. This model can be computed incrementally by using only two basic operations: the removal and the fictive edge shifting. In this work, we show that Euler characteristic can be computed incrementally during the topological map construction. This involves an efficient algorithm and open interesting perspectives for other features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertrand, Y., Damiand, G., Fiorio, C.: Topological map: Minimal encoding of 3d segmented images. In: Workshop on Graph-Based Representations in Pattern Recognition, Ischia, Italy, IAPR-TC15, pp. 64–73 (2001)

    Google Scholar 

  2. Damiand, G.: Définition et étude d’un modèle topologique minimal de représentation d’images 2D et 3D. Thèse de doctorat, Université Montpellier II (2001)

    Google Scholar 

  3. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002), available on: http://www.math.cornell.edu/~hatcher/AT/ATpage.html

    MATH  Google Scholar 

  4. Agoston, M.K.: Algebraic Topology, a first course. In: Dekker, M. (ed.) Pure and applied mathematics (1976)

    Google Scholar 

  5. Klette, R., Rosenfeld, A.: Digital Geometry - Geometrics Methods for Digital Pictures Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  6. Lee, C., Poston, T., Rosenfeld, A.: Holes and genus of 2D and 3D digital images. CVGIP: Graphical Models and Image Processing 55, 20–47 (1993)

    Article  Google Scholar 

  7. Imiya, A., Eckhardt, U.: The Euler Characteristics of discrete objects and discrete quasi-objects. Computer Vision and Image Understanding 75, 307–318 (1999)

    Article  Google Scholar 

  8. Desbarats, P., Domenger, J.P.: Retrieving and using topological characteristics from 3d discrete images. In: Proceedings of the Computer Vision Winter Workshop, pp. 130–139 (2002)

    Google Scholar 

  9. Brimkov, V., Maimone, A., Nordo, G.: An explicit formula for the number of tunnels in digital objects. ArXiv Computer Science e-prints (2005)

    Google Scholar 

  10. Spehner, J.: Merging in maps and in pavings. Theoretical Computer Science 86, 205–232 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Edmonds, J.: A combinatorial representation for polyhedral surfaces. Notices of the American Mathematical Society 7 (1960)

    Google Scholar 

  12. Tutte, W.: A census of planar maps. Canad. J. Math. 15, 249–271 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jacques, A.: Constellations et graphes topologiques. Combinatorial Theory and Applications 2, 657–673 (1970)

    MathSciNet  Google Scholar 

  14. Cori, R.: Un code pour les graphes planaires et ses applications. PhD thesis, Université Paris VII (1973)

    Google Scholar 

  15. Cori, R.: Un code pour les graphes planaires et ses applications. In: Astérisque, Soc. Math. de France, Paris, France, vol. 27 (1975)

    Google Scholar 

  16. Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional generalized maps. Commputer Aided Design 23 (1991)

    Google Scholar 

  17. Damiand, G., Lienhardt, P.: Removal and contraction for n-dimensional generalized maps. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 408–419. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Fiorio, C.: A topologically consistent representation for image analysis: the frontiers topological graph. In: Miguet, S., Ubéda, S., Montanvert, A. (eds.) DGCI 1996. LNCS, vol. 1176, pp. 151–162. Springer, Heidelberg (1996)

    Google Scholar 

  19. Brun, L., Domenger, J.P., Braquelaire, J.P.: Discrete maps: a framework for region segmentation algorithms. In: Workshop on Graph-Based Representations in Pattern Recognition, Lyon, IAPR-TC15 (1997); Published in Advances in Computing (Springer)

    Google Scholar 

  20. Pailloncy, J.G., Jolion, J.M.: The frontier-region graph. In: Workshop on Graph-Based Representations in Pattern Recognition. Computing Supplementum, vol. 12, pp. 123–134. Springer, Heidelberg (1997)

    Google Scholar 

  21. Braquelaire, J.P., Brun, L.: Image segmentation with topological maps and inter-pixel representation. Journal of Visual Communication and Image Representation 9, 62–79 (1998)

    Article  Google Scholar 

  22. Braquelaire, J.P., Desbarats, P., Domenger, J.P., Wüthrich, C.: A topological structuring for aggregates of 3d discrete objects. In: Workshop on Graph-Based Representations in Pattern Recognition, Austria, IAPR-TC15, pp. 193–202 (1999)

    Google Scholar 

  23. Bertrand, Y., Fiorio, C., Pennaneach, Y.: Border map: a topological representation for nd image analysis. In: Bertrand, G., Couprie, M., Perroton, L. (eds.) DGCI 1999. LNCS, vol. 1568, pp. 242–257. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Damiand, G., Bertrand, Y., Fiorio, C.: Topological model for two-dimensional image representation: definition and optimal extraction algorithm. Computer Vision and Image Understanding 93, 111–154 (2004)

    Article  Google Scholar 

  25. Bertrand, Y., Damiand, G., Fiorio, C.: Topological encoding of 3d segmented images. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 311–324. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  26. Peltier, S., Alayrangues, S., Fuchs, L., Lachaud, J.O.: Computation of homology groups and generators. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 195–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Damiand, G., Peltier, S., Fuchs, L., Lienhardt, P. (2006). Topological Map: An Efficient Tool to Compute Incrementally Topological Features on 3D Images. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_1

Download citation

  • DOI: https://doi.org/10.1007/11774938_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35153-5

  • Online ISBN: 978-3-540-35154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics