Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Embedding Real Time in Stochastic Process Algebras

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4054))

Included in the following conference series:

Abstract

We present a stochastic process algebra including immediate actions, deadlock and termination, and explicit stochastic delays, in the setting of weak choice between immediate actions and passage of time. The operational semantics is a spent time semantics, avoiding explicit clocks. We discuss the embedding of weak-choice real-time process theories and analyze the behavior of parallel composition in the weak choice framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baeten, J., Middelburg, C.: Process Algebra with Timing. Monographs in Theoretical Computer Science. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  2. Nicollin, X., Sifakis, J.: An overview and synthesis of timed process algebras. In: de Bakker, J.W., et al. (eds.) REX 1991. LNCS, vol. 600, pp. 526–548. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  3. Jonsson, B., Larsen, K.G.: Probabilistic extensions of process algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebras. Elsevier, Amsterdam (2001)

    Google Scholar 

  4. Andova, S.: Time and probability in process algebra. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 323–338. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202(1–2), 1–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hillston, J.: A compositional approach to performance modelling. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  7. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  8. D’Argenio, P., Katoen, J.P.: A theory of stochastic systems, part II: Process algebra. Information and Computation 203(1), 39–74 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bravetti, M.: Specification and Analysis of Stochastic Real-time Systems. PhD. thesis, Universita di Bologna (2002)

    Google Scholar 

  10. Lopez, N., Nunez, M.: NMSPA: A non-markovian model for stochastic processes. In: DSVV 2000. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  11. D’Argenio, P., Katoen, J.P.: A theory of stochastic systems, part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Marsan, M.A., Bianco, A., Ciminiera, L., Sisto, R., Valenzano, A.: A LOTOS extension for the performance analysis of distributed systems. IEEE/ACM Trans. Netw. 2(2), 151–165 (1994)

    Article  Google Scholar 

  13. Priami, C.: Stochastic π-calculus with general distributions. In: Ribaudo, M. (ed.) 4th Workshop on PAPM, Torino, Italy, pp. 41–57 (1996)

    Google Scholar 

  14. Hermanns, H., Mertsiotakis, V., Rettelbach, M.: Performance analysis of distributed systems using TIPP. In: Pooley, Hillston, King (eds.) UKPEW 1994, University of Edinburgh, pp. 131–144 (1994)

    Google Scholar 

  15. Katoen, J.P., D’Argenio, P.R.: General distributions in process algebra. In: Brinksma, E., Hermanns, H., Katoen, J.-P., et al. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 375–429. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Bravetti, M., D’Argenio, P.: Tutte le algebre insieme. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. D’Argenio, P.: From stochastic automata to timed automata: Abstracting probability in a compositional manner. In: Fiore, M., Fridlender, D. (eds.) Proceedings of WAIT 2003. Associated to the 32 JAIIO, Buenos Aires, Argentina (2003)

    Google Scholar 

  18. Baeten, J.C.M., Reniers, M.A.: Timed process algebra (with a focus on explicit termination and relative-timing). In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 59–97. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Markovski, J., de Vink, E.P.: Embedding real time in stochastic time process algebras. Technical Report CS 06/15, Technische Universiteit Eindhoven (2006)

    Google Scholar 

  20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Markovski, J., de Vink, E.P. (2006). Embedding Real Time in Stochastic Process Algebras. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_4

Download citation

  • DOI: https://doi.org/10.1007/11777830_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35362-1

  • Online ISBN: 978-3-540-35365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics