Abstract
Computable Analysis investigates computability on real numbers and related spaces. One approach to Computable Analysis is Type Two Theory of Effectivity (TTE). TTE provides a computational framework for non-discrete spaces with cardinality of the continuum. Its basic tool are representations. A representation equips the objects of a given space with “names”, which are infinite words. Computations are performed on these names.
We discuss the property of admissibility as a well-behavedness criterion for representations. Moreover we investigate and characterise the class of spaces which have such an admissible representation. This category turns out to have a remarkably rich structure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bauer, A.: A Relationship between Equilogical Spaces and Type Two Effectivity. Electronic Notes in Theoretical Computer Science 45 (2001)
Battenfeld, I., Schröder, M., Simpson, A.K.: Compactly Generated Domain Theory. Math. Struct. in Comp. Sci. 16 (2006)
Brattka, V.: Computability over Topological Structures. In: Computability and Models, pp. 93–136. Kluwer Acadamic Publishers, New York (2003)
Brattka, V., Hertling, P.: Topological Properties of Real Number Representations. Theoretical Computer Science 284, 241–257 (2002)
Escardó, M.H., Lawson, J.D., Simpson, A.K.: Comparing Cartesian-closed Categories of Core Compactly Generated Spaces. Topology and its Applications 143, 105–145 (2004)
Engelking, R.: General Topology. Heldermann, Berlin (1989)
Franklin, S.P.: Spaces in which Sequences Suffice. Fundamenta Mathematicae 57, 107–115 (1965)
Grzegorczyk, A.: On the Definitions of Computable Real Continuous Functions. Fundamenta Mathematicae 44, 61–71 (1957)
Ko, K.I.: Complexity Theory of Real Functions. In: Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)
Kulisch, U.: Numerical Algorithms with Automatic Result Verification. Lectures in Applied Mathematics 32, 471–502 (1996)
Menni, M., Simpson, A.: Topological and Limit-space Subcategories of Countably-based Equilogical Spaces. Mathematical Structures in Computer Science 12 (2002)
Müller, N.: The iRRAM: Exact Arithmetic in C++. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 222–252. Springer, Heidelberg (2001)
Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. In: Perspectives in Mathematical Logic. Springer, Berlin (1989)
Schröder, M.: Extended Admissibility. Theoretical Computer Science 284, 519–538 (2002)
Schröder, M.: Admissible Representations of Limit Spaces. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 273–295. Springer, Heidelberg (2001)
Schröder, M.: Admissible Representations for Continuous Computations. Ph.D Thesis, Fachbereich Informatik, FernUniversität Hagen (2002)
Stoltenberg-Hansen, V., Tucker, J.V.: Effective Algebras. In: Handbook of Logic in Computer Science, vol. 4, pp. 357–526. Oxford Science Publications (1995)
Stoltenberg-Hansen, V., Tucker, J.V.: Concrete Models of Computation for Topological Algebras. Theoretical Computer Science 219, 347–378 (1999)
Simpson, A.: Towards a Convenient Category of Topological Domains. In: Proceedings of thirteenth ALGI Workshop, RIMS, Kyoto University (2003)
Smyth, M.B.: Topology. In: Handbook of Logic in Computer Science, vol. 1, pp. 641–761. Oxford Science Publications (1992)
Turing, A.M.: On Computable Numbers, with an Application to the “Entscheidungsproblem”. A Correction. Proceedings of the London Mathematical Society 43(2), 544–546 (1937)
Weihrauch, K.: Computability. Springer, Berlin (1987)
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
Willard, S.: General Topology. Addison-Wesley, Reading (1970)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schröder, M. (2006). Admissible Representations in Computable Analysis. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds) Logical Approaches to Computational Barriers. CiE 2006. Lecture Notes in Computer Science, vol 3988. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780342_48
Download citation
DOI: https://doi.org/10.1007/11780342_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35466-6
Online ISBN: 978-3-540-35468-0
eBook Packages: Computer ScienceComputer Science (R0)