Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Syntactic Variety in Boundary Logic

  • Conference paper
Diagrammatic Representation and Inference (Diagrams 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4045))

Included in the following conference series:

Abstract

Boundary logic is a formal diagrammatic system that combines Peirce’s Entitative Graphs with Spencer Brown’s Laws of Form. Its conceptual basis includes boundary forms composed of non-intersecting closed curves, void-substitution (deletion of irrelevant structure) as the primary mechanism of reduction, and spatial pattern-equations that define valid transformations. Pure boundary algebra, free of interpretation, is first briefly described, followed by a description of boundary logic. Then several new diagrammatic notations for logic derived from geometrical and topological transformation of boundary forms are presented. The algebra and an example proof of modus ponens is provided for textual, enclosure, graph, map, path and block based forms. These new diagrammatic languages for logic convert connectives into configurations of containment, connectivity, contact, conveyance, and concreteness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kneale, W., Kneale, M.: The Development of Logic. Oxford Univ. Press, Oxford (1962)

    MATH  Google Scholar 

  2. Peirce, C.S.: Collected Papers of Charles Sanders Peirce. In: Hartshorne, C., Weiss, P., Burks, A. (eds.). Harvard Univ. Press, Cambridge (1931–1958)

    Google Scholar 

  3. Spencer Brown, G.: Laws of Form. George Allen and Unwin (1969)

    Google Scholar 

  4. Bricken, W.: The Mathematics of Boundaries: A Beginning. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS, vol. 4045, pp. 70–72. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Bricken, W., Gullichsen, E.: Introduction to Boundary Logic. Future Computing Systems 2:4, 1–77 (1989)

    Google Scholar 

  6. Bricken, W.: Distinction Networks. In: Wachsmuth, I., Brauer, W., Rollinger, C.-R. (eds.) KI 1995. LNCS, vol. 981, pp. 35–48. Springer, Heidelberg (1995)

    Google Scholar 

  7. James, J., Bricken, W.: A Boundary Notation for Visual Mathematics. In: 1992 IEEE Workshop on isual Languages, Seattle, pp. 267–269. IEEE Press, Los Alamitos (1992)

    Chapter  Google Scholar 

  8. Shin, S.: The Logical Status of Diagrams. Cambridge Univ. Press, Cambridge (1994)

    MATH  Google Scholar 

  9. Kauffman, L.H., Varela, F.J.: Form Dynamics. J. Soc. Biol. Structures 3, 171–206 (1980)

    Article  Google Scholar 

  10. Barwise, J., Etchemendy, J.: Heterogeneous Logic. In: Allwein, G., Barwise, J. (eds.) Logical Reasoning with Diagrams. Oxford Univ. Press, Oxford (1996)

    Google Scholar 

  11. Shin, S.: The Iconic Logic of Peirce’s Graphs. MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Hammer, E.: Logic and Visual Information. CSLI Publications, Stanford (1995)

    MATH  Google Scholar 

  13. Halmos, P., Givant, S.: Logic as Algebra. Mathematical Assoc. of America (1998)

    Google Scholar 

  14. Birkoff, G.: On the Structure of Abstract Algebras. Proc. Cambridge Phil. Soc. 31, 417–429 (1935)

    Google Scholar 

  15. Stern, A.: Matrix Logic. North-Holland/Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  16. Kauffman, L.H.: Knots and Physics, 2nd edn. World Scientific, Singapore (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bricken, W. (2006). Syntactic Variety in Boundary Logic. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds) Diagrammatic Representation and Inference. Diagrams 2006. Lecture Notes in Computer Science(), vol 4045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783183_9

Download citation

  • DOI: https://doi.org/10.1007/11783183_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35623-3

  • Online ISBN: 978-3-540-35624-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics