Abstract
Boundary logic is a formal diagrammatic system that combines Peirce’s Entitative Graphs with Spencer Brown’s Laws of Form. Its conceptual basis includes boundary forms composed of non-intersecting closed curves, void-substitution (deletion of irrelevant structure) as the primary mechanism of reduction, and spatial pattern-equations that define valid transformations. Pure boundary algebra, free of interpretation, is first briefly described, followed by a description of boundary logic. Then several new diagrammatic notations for logic derived from geometrical and topological transformation of boundary forms are presented. The algebra and an example proof of modus ponens is provided for textual, enclosure, graph, map, path and block based forms. These new diagrammatic languages for logic convert connectives into configurations of containment, connectivity, contact, conveyance, and concreteness.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kneale, W., Kneale, M.: The Development of Logic. Oxford Univ. Press, Oxford (1962)
Peirce, C.S.: Collected Papers of Charles Sanders Peirce. In: Hartshorne, C., Weiss, P., Burks, A. (eds.). Harvard Univ. Press, Cambridge (1931–1958)
Spencer Brown, G.: Laws of Form. George Allen and Unwin (1969)
Bricken, W.: The Mathematics of Boundaries: A Beginning. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds.) Diagrams 2006. LNCS, vol. 4045, pp. 70–72. Springer, Heidelberg (2006)
Bricken, W., Gullichsen, E.: Introduction to Boundary Logic. Future Computing Systems 2:4, 1–77 (1989)
Bricken, W.: Distinction Networks. In: Wachsmuth, I., Brauer, W., Rollinger, C.-R. (eds.) KI 1995. LNCS, vol. 981, pp. 35–48. Springer, Heidelberg (1995)
James, J., Bricken, W.: A Boundary Notation for Visual Mathematics. In: 1992 IEEE Workshop on isual Languages, Seattle, pp. 267–269. IEEE Press, Los Alamitos (1992)
Shin, S.: The Logical Status of Diagrams. Cambridge Univ. Press, Cambridge (1994)
Kauffman, L.H., Varela, F.J.: Form Dynamics. J. Soc. Biol. Structures 3, 171–206 (1980)
Barwise, J., Etchemendy, J.: Heterogeneous Logic. In: Allwein, G., Barwise, J. (eds.) Logical Reasoning with Diagrams. Oxford Univ. Press, Oxford (1996)
Shin, S.: The Iconic Logic of Peirce’s Graphs. MIT Press, Cambridge (2002)
Hammer, E.: Logic and Visual Information. CSLI Publications, Stanford (1995)
Halmos, P., Givant, S.: Logic as Algebra. Mathematical Assoc. of America (1998)
Birkoff, G.: On the Structure of Abstract Algebras. Proc. Cambridge Phil. Soc. 31, 417–429 (1935)
Stern, A.: Matrix Logic. North-Holland/Elsevier, Amsterdam (1988)
Kauffman, L.H.: Knots and Physics, 2nd edn. World Scientific, Singapore (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bricken, W. (2006). Syntactic Variety in Boundary Logic. In: Barker-Plummer, D., Cox, R., Swoboda, N. (eds) Diagrammatic Representation and Inference. Diagrams 2006. Lecture Notes in Computer Science(), vol 4045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11783183_9
Download citation
DOI: https://doi.org/10.1007/11783183_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35623-3
Online ISBN: 978-3-540-35624-0
eBook Packages: Computer ScienceComputer Science (R0)