Abstract
This paper presents a nonrigid image registration method for cardiac deformation recovery from 3D MR image sequences. The main contribution of this work is that the method is mathematically guaranteed to generate incompressible deformations. This is a desirable property since the myocardium has been shown to be close to incompressible. The method is based on an incompressible deformable model that can include all four cardiac chambers and has a relatively small number of parameters. The myocardium needs to be segmented in an initial frame after which the method automatically determines the tissue deformation everywhere in the myocardium throughout the cardiac cycle. The method has been tested with four 3D cardiac MR image sequences for the left and right ventricles and it has been evaluated against manual segmentation. The volume agreement between the model and the manual segmentation exceeds 90% and the distance between the model and the manually generated endocardial and epicardial surface is 1.65mm on average.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tustison, N., Amini, A.: Biventricular Myocardial Strains via Nonrigid Registration of AnFigatomical NURBS Models. IEEE Trans. on Medical Imaging 25, 94–112 (2006)
Pan, L., Prince, J., Lima, J., Osman, N.: Fast tracking of cardiac motion using 3D-HARP. IEEE Trans. on Biomedical Engineering 52, 1425–1435 (2005)
Cao, Y., Miller, M., Winslow, R., Younes, L.: Large Deformation Diffeomorphic Metric Mapping of Vector Fields. IEEE Trans. on Medical Imaging 24, 1216–1230 (2005)
Gilson, W., Yuang, Z., French, B., Epstein, F.: Measurement of myocardial mechanics in mice before and after infarction using multislice displacement-encoded MRI with 3D motion encoding. American Journal of Physiol.- Heart Circ. Physiol. 288, 1491–1497 (2005)
Meyer, F., Constable, R., Sinusas, A., Duncan, J.: Tracking Myocardial Deformation Using Phase Contrast MR Velocity Fields: A Stochastic Approach. IEEE Trans. on Medical Imaging 15, 453–465 (1996)
Kaus, M., Von Berg, J., Weese, J., Niessen, W., Pekar, V.: Automated segmentation of the left ventricle in cardiac MRI. Medical Image Analysis 8, 245–254 (2004)
Huang, H., Shen, L., Zhang, R., Makedon, F., Hettleman, B., Pearlman, J.: Surface Alignment of 3D Spherical Harmonics Models: Application to Cardiac MRI Analysis. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 67–74. Springer, Heidelberg (2005)
Uzümcü, M., Frangi, A., Sonka, M., Reiber, J., Lelieveldt, B.: ICA vs. PCA Active Appearance Models: Application to Cardiac MR Segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 451–458. Springer, Heidelberg (2003)
Gering, D.: Automatic segmentation of cardiac MRI. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 524–532. Springer, Heidelberg (2003)
Van Assen, H., Danilouchkine, M., Behloul, F., Lamb, H., Van Der Geest, R., Reiber, J., Lelieveldt, B.: Cardiac LV Segmentation Using a 3D Active Shape Model Driven by Fuzzy Inference. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 533–540. Springer, Heidelberg (2003)
Montagnat, J., Delingette, H.: 4D deformable Models with temporal constraints: applications to 4D cardiac image segmentation. Medical Image Analysis 9, 87–100 (2005)
Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Application to 4D cardiac image analysis. Medical Image Analysis 7, 475–488 (2003)
Remme, E., Augenstein, K., Young, A., Hunter, P.: Parameters Distribution Models for Estimation of Population Based Left Ventricular Deformation Using Sparse Fiducial Markers. IEEE Trans. on Medical Imaging 24, 381–392 (2005)
Papademteris, X., Sinusas, A., Dione, D., Constable, R., Duncan, J.: Estimation of 3-D Left Ventricular Deformation From Medical Images Using Biomechanical Models. IEEE Trans. on Medical Imaging 21, 524–532 (2002)
Lorenzo-Valdes, M., Sanchez-Ortiz, G., Mohiaddin, R., Rueckert, D.: Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 642–650. Springer, Heidelberg (2002)
Lorenzo-Valdes, M., Sanchez-Ortiz, G., Elkington, A., Mohiaddin, R., Rueckert, D.: Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm. Medical Image Analysis 8, 255–265 (2004)
Shen, D., Sundar, H., Xue, Z., Fan, Y., Litt, H.: Consistent Estimation of Cardiac Motions by 4D Image Registration. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 902–910. Springer, Heidelberg (2005)
Lin, N., Duncan, J.: Generalized Robust Point Matching Using an Exented Free-Form Deformation Model: Application to Cardiac Images. In: International Symposium on Biomedical Imaging, pp. 320–324 (2004)
Papademetris, X., Shi, P., Dione, D., Sinusas, A., Duncan, J.: Recovery of soft tissue object deformation from 3D image sequences using biomechanical models. In: Kuba, A., Sámal, M., Todd-Pokropek, A. (eds.) IPMI 1999. LNCS, vol. 1613, pp. 352–357. Springer, Heidelberg (1999)
Fan, L., Chen, C.: LV Motion Estimation Based on the Integration of Continuum Mechanics and Estimation Theory. In: SPIE Medical Imaging, pp. 81–92 (1999)
Yin, F., Chan, C., Judd, R.: Compressibility of Perfused Passive Myocardium. American Journal of Physiol.- Heart Circ. Physiol. 8, 1864–1870 (1996)
Judd, R., Levy, B.: Effects of Barium-induced Cardiac Contraction on Large and Small Vessel Intramyocardial Blood Volume. Circulation, 217–225 (1991)
Liu, Y., Bahn, R., Ritman, E.: Dynamic Intramyocardial Blood Volume: Evaluation with a Radiological Opaque Marker Method. American Journal of Physiol.- Heart Circ. Physiol. 12, 963–967 (1992)
Vergroesen, I., Noble, M., Spaan, J.: Intramyocardial Blood Volume Change in First Moments of Cardiac Arrest in Anesthetized Goats. American Journal of Physiol.- Heart Circ. Physiol. 4, 307–316 (1987)
Jakob, M., Hess, O., Jenni, R., Heywood, J., Grimm, J.: Determination of the Left Ventricular Systolic Wall Thickness by Digital Substraction Angiography. European Heart Journal 12, 573–582 (1991)
Wahaba, G.: Spline Interpolation and Smoothing on the sphere. SIAM Journal Sci. Stat. Comput. 2, 1–15 (1981)
Carmo, D.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs (1976)
Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)
Skrinjar, O., Bistoquet, A.: Cardiac deformation recovery via incompressible transformation decomposition. In: SPIE Medical Imaging, vol. 5747, pp. 361–370 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bistoquet, A., Parks, W.J., Škrinjar, O. (2006). Myocardial Deformation Recovery Using a 3D Biventricular Incompressible Model. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_14
Download citation
DOI: https://doi.org/10.1007/11784012_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35648-6
Online ISBN: 978-3-540-35649-3
eBook Packages: Computer ScienceComputer Science (R0)