Abstract
Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several propositional monomodal logics, propositional and first-order dynamic logic, and propositional and first-order linear temporal logic in the theory of fork algebras.
In this paper we formalize these interpretability results as institution representations from the institution of the corresponding logics to that of fork algebra. We also advocate for the institution of fork algebras as a sufficiently rich universal institution into which institutions meaningful in software development can be represented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. Addison–Wesley Longman, Boston (1998)
Frias, M.F.: Fork algebras in algebra, logic and computer science. Advances in logic, vol. 2. World Scientific, Singapore (2002)
Frias, M.F., Orlowska, E.: Equational reasoning in non-classical logics. Journal of Applied Non-classical Logics 8, 27–66 (1998)
Frias, M.F., Baum, G.A., Maibaum, T.S.E.: Interpretability of first-order dynamic logic in a relational calculus. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 66–80. Springer, Heidelberg (2002)
Frias, M.F., Lopez Pombo, C.G.: Time is on my side. In: Berghammer, R., Möller, B. (eds.) Proceedings of the 7th Conference on Relational Methods in Computer Science (RelMiCS) - 2nd International Workshop on Applications of Kleene Algebra, Malente, Germany, pp. 105–111 (2003)
Frias, M.F., Lopez Pombo, C.G.: Interpretability of first-order linear temporal logics in fork algebras. Journal of Logic and Algebraic Programming 66, 161–184 (2006)
Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E.M., Kozen, D. (eds.) Local Area Networks: An Advanced Course. LNCS, vol. 184, pp. 221–256. Springer, Heidelberg (1985)
Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Artalejo, M.R. (eds.) Proceedings of the Logic Colloquium 1987, Granada, Spain, vol. 129, pp. 275–329. North-Holland, Amsterdam (1989)
Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.J. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)
Frias, M.F., Gamarra, R., Steren, G., Bourg, L.: A strategy for efficient verification of relational specification, based in monotonicity analysis. In: Redmiles, D.F., Ellman, T., Zisman, A. (eds.) Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, Long Beach, California, USA, pp. 305–308. Association for the Computer Machinery and IEEE Computer Society, ACM Press (2005)
Lopez Pombo, C.G., Owre, S., Shankar, N.: A semantic embedding of the A g dynamic logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI International (2002)
Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)
Maddux, R.D.: Finitary algebraic logic. Zeitschrift fur Mathematisch Logik und Grundlagen der Mathematik 35, 321–332 (1989)
Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in MathematicsGermany. Springer, Berlin (1981)
Fiadeiro, J.L., Sernadas, A.: Structuring theories on consequence. In: Tarlecki, A., Sannella, D. (eds.) Selected papers from the 5th Workshop on Specification of Abstract Data Types, Gullane, Scotland. LNCS, pp. 44–72. Springer, Heidelberg (1987)
Fiadeiro, J.L.: Categories for software engineering. Springer, Heidelberg (2005)
Fiadeiro, J.L.: On the emergence of properties in component-based systems. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pombo, C.G.L., Frias, M.F. (2006). Fork Algebras as a Sufficiently Rich Universal Institution. In: Johnson, M., Vene, V. (eds) Algebraic Methodology and Software Technology. AMAST 2006. Lecture Notes in Computer Science, vol 4019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784180_19
Download citation
DOI: https://doi.org/10.1007/11784180_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35633-2
Online ISBN: 978-3-540-35636-3
eBook Packages: Computer ScienceComputer Science (R0)