Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fork Algebras as a Sufficiently Rich Universal Institution

  • Conference paper
Algebraic Methodology and Software Technology (AMAST 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4019))

Abstract

Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several propositional monomodal logics, propositional and first-order dynamic logic, and propositional and first-order linear temporal logic in the theory of fork algebras.

In this paper we formalize these interpretability results as institution representations from the institution of the corresponding logics to that of fork algebra. We also advocate for the institution of fork algebras as a sufficiently rich universal institution into which institutions meaningful in software development can be represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Booch, G., Rumbaugh, J., Jacobson, I.: The unified modeling language user guide. Addison–Wesley Longman, Boston (1998)

    Google Scholar 

  2. Frias, M.F.: Fork algebras in algebra, logic and computer science. Advances in logic, vol. 2. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  3. Frias, M.F., Orlowska, E.: Equational reasoning in non-classical logics. Journal of Applied Non-classical Logics 8, 27–66 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Frias, M.F., Baum, G.A., Maibaum, T.S.E.: Interpretability of first-order dynamic logic in a relational calculus. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 66–80. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Frias, M.F., Lopez Pombo, C.G.: Time is on my side. In: Berghammer, R., Möller, B. (eds.) Proceedings of the 7th Conference on Relational Methods in Computer Science (RelMiCS) - 2nd International Workshop on Applications of Kleene Algebra, Malente, Germany, pp. 105–111 (2003)

    Google Scholar 

  6. Frias, M.F., Lopez Pombo, C.G.: Interpretability of first-order linear temporal logics in fork algebras. Journal of Logic and Algebraic Programming 66, 161–184 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goguen, J.A., Burstall, R.M.: Introducing institutions. In: Clarke, E.M., Kozen, D. (eds.) Local Area Networks: An Advanced Course. LNCS, vol. 184, pp. 221–256. Springer, Heidelberg (1985)

    Google Scholar 

  8. Meseguer, J.: General logics. In: Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Artalejo, M.R. (eds.) Proceedings of the Logic Colloquium 1987, Granada, Spain, vol. 129, pp. 275–329. North-Holland, Amsterdam (1989)

    Chapter  Google Scholar 

  9. Tarlecki, A.: Moving between logical systems. In: Haveraaen, M., Owe, O., Dahl, O.J. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996)

    Google Scholar 

  10. Frias, M.F., Gamarra, R., Steren, G., Bourg, L.: A strategy for efficient verification of relational specification, based in monotonicity analysis. In: Redmiles, D.F., Ellman, T., Zisman, A. (eds.) Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, Long Beach, California, USA, pp. 305–308. Association for the Computer Machinery and IEEE Computer Society, ACM Press (2005)

    Google Scholar 

  11. Lopez Pombo, C.G., Owre, S., Shankar, N.: A semantic embedding of the A g dynamic logic in PVS. Technical Report SRI-CSL-02-04, Computer Science Laboratory, SRI International (2002)

    Google Scholar 

  12. Tarski, A.: On the calculus of relations. Journal of Symbolic Logic 6, 73–89 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maddux, R.D.: Finitary algebraic logic. Zeitschrift fur Mathematisch Logik und Grundlagen der Mathematik 35, 321–332 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in MathematicsGermany. Springer, Berlin (1981)

    MATH  Google Scholar 

  15. Fiadeiro, J.L., Sernadas, A.: Structuring theories on consequence. In: Tarlecki, A., Sannella, D. (eds.) Selected papers from the 5th Workshop on Specification of Abstract Data Types, Gullane, Scotland. LNCS, pp. 44–72. Springer, Heidelberg (1987)

    Google Scholar 

  16. Fiadeiro, J.L.: Categories for software engineering. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. Fiadeiro, J.L.: On the emergence of properties in component-based systems. In: Nivat, M., Wirsing, M. (eds.) AMAST 1996. LNCS, vol. 1101, Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pombo, C.G.L., Frias, M.F. (2006). Fork Algebras as a Sufficiently Rich Universal Institution. In: Johnson, M., Vene, V. (eds) Algebraic Methodology and Software Technology. AMAST 2006. Lecture Notes in Computer Science, vol 4019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784180_19

Download citation

  • DOI: https://doi.org/10.1007/11784180_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35633-2

  • Online ISBN: 978-3-540-35636-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics