Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tight Approximation Algorithm for Connectivity Augmentation Problems

  • Conference paper
Automata, Languages and Programming (ICALP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4051))

Included in the following conference series:

  • 1539 Accesses

Abstract

The S-connectivity λ S G (u,v) of (u,v) in a graph G is the maximum number of uv-paths that no two of them have an edge or a node in S–{u,v} in common. The corresponding Connectivity Augmentation (CA) problem is: given a graph G 0=(V,E 0), S ⊆ V, and requirements r(u,v) on V ×V, find a minimum size set F of new edges (any edge is allowed) so that \(\lambda^S_{G_0+F}(u,v) \geq r(u,v)\) for all u,vV. Extensively studied particular cases are the edge- CA (when S=∅) and the node- CA (when S=V). A. Frank gave a polynomial algorithm for undirected edge-CA and observed that the directed case even with r(u,v) ∈{0,1} is at least as hard as the Set-Cover problem. Both directed and undirected node-CA have approximation threshold \(\Omega(2^{\log^{1-\varepsilon}n})\). We give an approximation algorithm that matches these approximation thresholds. For both directed and undirected CA with arbitrary requirements our approximation ratio is: O(logn) for SV arbitrary, and O(r max logn) for S=V, where r max= max u,v ∈ V r(u,v).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benczúr, A., Frank, A.: Covering symmetric supermodular functions by graphs. Math Programming 84, 483–503 (1999)

    Article  MATH  Google Scholar 

  2. Charikar, M., Chekuri, C., Cheung, T., Dai, Z., Goel, A., Guha, S., Li, M.: Approximation algorithms for directed Steiner problems. Journal of Algorithms 33, 73–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheriyan, J., Thurimella, R.: Fast algorithms for k-shredders and k-node connectivity augmentation. Journal of Algorithms 33, 15–50 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cheriyan, J., Vempala, S., Vetta, A.: An approximation algorithm for the minimum-cost k-vertex connected subgraph. SIAM Journal on Computing 32(4), 1050–1055 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheriyan, J., Vempala, S., Vetta, A.: Network design via iterative rounding of setpair relaxations. manuscript (2003)

    Google Scholar 

  6. Cheriyan, J., Vetta, A.: Approximation algorithms for network design with metric costs. In: Symposium on the Theory of Computing (STOC), pp. 167–175 (2005)

    Google Scholar 

  7. Dodis, Y., Khanna, S.: Design networks with bounded pairwise distance. In: Symposium on the Theory of Computing (STOC), pp. 750–759 (1999)

    Google Scholar 

  8. Feldman, J., Ruhl, M.: The directed steiner network problem is tractable for a constant number of terminals. In: Symposium on the Foundations of Computer Science (FOCS), p. 299 (1999)

    Google Scholar 

  9. Fleischer, L.K., Jain, K., Williamson, D.P.: An iterative rounding 2-approximation algorithm for the element connectivity problem. In: Symposium on the Foundations of Computer Science (FOCS), pp. 339–347 (2001)

    Google Scholar 

  10. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Math 5(1), 25–53 (1992)

    Article  MATH  Google Scholar 

  11. Frank, A.: Connectivity augmentation problems in network design. Mathematical Programming: State of the Art, 34–63 (1995)

    Google Scholar 

  12. Frank, A.: Edge-connection of graphs, digraphs, and hypergraphs, EGRES TR No 2001-11 (2001)

    Google Scholar 

  13. Frank, A., Jordán, T.: Minimal edge-coverings of pairs of sets. J. on Comb. Theory B 65, 73–110 (1995)

    Article  MATH  Google Scholar 

  14. Frank, A., Tardos, E.: An application of submodular flows. Linear Algebra and its Applications 114/115, 329–348 (1989)

    Article  MathSciNet  Google Scholar 

  15. Gabow, H.N., Goemans, M.X., Tardos, E., Williamson, D.P.: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. In: Symposium on Discrete Algorithams (SODA), pp. 562–571 (2005)

    Google Scholar 

  16. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Symposium on the Theory of Computing STOC, pp. 585–594 (2003)

    Google Scholar 

  17. Jackson, B., Jordán, T.: A near optimal algorithm for vertex connectivity augmentation. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 313–325. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 264–279. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson, D.S.: Approximation algorithms for combinatorial problems. Joural of Computing and System Sciences 9(3), 256–278 (1974)

    Article  MATH  Google Scholar 

  21. Jordán, T.: On the optimal vertex-connectivity augmentation. J. on Comb. Theory B 63, 8–20 (1995)

    Article  MATH  Google Scholar 

  22. Jordán, T.: A note on the vertex connectivity augmentation. J. on Comb. Theory B 71(2), 294–301 (1997)

    Article  MATH  Google Scholar 

  23. Khuller, S.: Approximation algorithms for for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6, pp. 236–265. PWS (1995)

    Google Scholar 

  24. Khuller, S., Raghavachari, B.: Improved approximation algorithms for uniform connectivity problems. Journal of Algorithms 21, 434–450 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  25. Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Journal of the Association for Computing Machinery 41(2), 214–235 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Kortsarz, G., Nutov, Z.: Approximation algorithm for k-node connected subgraphs via critical graphs. In: Symposium on the Theory of Computing (STOC), pp. 138–145 (2004)

    Google Scholar 

  27. Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics ( to appear, 2005)

    Google Scholar 

  28. Liberman, G., Nutov, Z.: On shredders and vertex-connectivity augmentation. Manuscript (2005)

    Google Scholar 

  29. Mader, W.: A reduction method for edge-connectivity in graphs. Annals of discrete Math 3, 145–164 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nagamochi, H., Ishii, T.: On the minimum local-vertex-connectivity augmentation in graphs. Discrete Applied Mathematics 129(2-3), 475–486 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nutov, Z.: Approximating connectivity augmentation problems. In: Symposium on Discrete Algorithms (SODA), pp. 176–185 (2005)

    Google Scholar 

  32. Nutov, Z.: Approximating rooted connectivity augmentation problems. Algorithmica (to appear, 2005)

    Google Scholar 

  33. Raz, R., Safra, S.: A sub-constant error-probability low-degree test and a sub-constant error-probability PCP characterization of NP. In: Symposium on the Theory of Computing (STOC), pp. 475–484 (1997)

    Google Scholar 

  34. Szigeti, Z.: On edge-connectivity augmentation of graphs and hypergraphs. manuscript (2004)

    Google Scholar 

  35. Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Computer and System Sciences 35(1), 96–144 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2, 385–393 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kortsarz, G., Nutov, Z. (2006). Tight Approximation Algorithm for Connectivity Augmentation Problems. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds) Automata, Languages and Programming. ICALP 2006. Lecture Notes in Computer Science, vol 4051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11786986_39

Download citation

  • DOI: https://doi.org/10.1007/11786986_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35904-3

  • Online ISBN: 978-3-540-35905-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics