Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Action Recognition Using Motion Primitives and Probabilistic Edit Distance

  • Conference paper
Articulated Motion and Deformable Objects (AMDO 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4069))

Included in the following conference series:

Abstract

In this paper we describe a recognition approach based on the notion of primitives. As opposed to recognizing actions based on temporal trajectories or temporal volumes, primitive-based recognition is based on representing a temporal sequence containing an action by only a few characteristic time instances. The human whereabouts at these instances are extracted by double difference images and represented by four features. In each frame the primitive, if any, that best explains the observed data is identified. This leads to a discrete recognition problem since a video sequence will be converted into a string containing a sequence of symbols, each representing a primitives. After pruning the string a probabilistic Edit Distance classifier is applied to identify which action best describes the pruned string. The approach is evaluated on five one-arm gestures and the recognition rate is 91.3%. This is concluded to be a promising result but also leaves room for further improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Babu, R.V., Ramakrishnan, K.R.: Compressed domain human motion recognition using motion history information. In: Proc. Int. Conf. on Acoustics, Speech and Signal Processing, Hong Kong, April 6-10 (2003)

    Google Scholar 

  2. Barbic, J., Pollard, N.S., Hodgins, J.K., Faloutsos, C., Pan, J.-Y., Safonova, A.: Segmenting Motion Capture Data into Distinct Behaviors. In: Graphics Interface, London, Ontario, Canada, May 17-19 (2004)

    Google Scholar 

  3. Bettinger, F., Cootes, T.F.: A Model of Facial Behaviour. In: IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Korea, May 17-19 (2004)

    Google Scholar 

  4. Bobick, A., Davis, J.: The Recognition of Human Movement Using Temporal Templates. IEEE Trans. Pattern Analysis and Machine Intelligence 23(3), 257–267 (2001)

    Article  Google Scholar 

  5. Bobick, A.F., Davis, J.: A Statebased Approach to the Representation and Recognition of Gestures. IEEE Trans. on Pattern Analysis and Machine Intelligence 19(12), 1325–1337 (1997)

    Article  Google Scholar 

  6. Bregler, C.: Learning and Recognizing Human Dynamics in Video Sequences. In: Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 568–574 (1997)

    Google Scholar 

  7. Campbell, L., Bobick, A.: Recognition of Human Body Motion Using Phase Space Constraints. In: International Conference on Computer Vision, Cambridge, Massachusetts (1995)

    Google Scholar 

  8. González, J., Varona, J., Roca, F.X., Villanueva, J.J.: aSpaces: Action spaces for recognition and synthesis of human actions. In: Perales, F.J., Hancock, E.R. (eds.) AMDO 2002. LNCS, vol. 2492, pp. 189–200. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Jenkins, O.C., Mataric, M.J.: Deriving Action and Behavior Primitives from Human Motion Data. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, September 30–October 4, 2002, pp. 2551–2556 (2002)

    Google Scholar 

  10. Just, A., Marcel, S.: HMM and IOHMM for the Recognition of Mono- and Bi-Manual 3D Hand Gestures. In: ICPR workshop on Visual Observation of Deictic Gestures (POINTING 2004), Cambridge, UK (August 2004)

    Google Scholar 

  11. Kale, A., Cuntoor, N., Chellappa, R.: A Framework for Activity-Specific Human Recognition. In: International Conference on Acoustics, Speech and Signal Processing, Orlando, Florida (May 2002)

    Google Scholar 

  12. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

    MathSciNet  Google Scholar 

  13. Rao, C., Yilmaz, A., Shah, M.: View-Invariant Representation and Recognition of Actions. Journal of Computer Vision 50(2), 55–63 (2002)

    Article  Google Scholar 

  14. Reng, L., Moeslund, T.B., Granum, E.: Finding Motion Primitives in Human Body Gestures. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 133–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. http://polhemus.com/ (January 2006)

  16. Weinberg, D., Ronfard, R., Boyer, E.: Motion History Volumes for Free Viewpoint Action Recognition. In: IEEE Int. Workshop on Modeling People and Human Interaction (2005)

    Google Scholar 

  17. Yilmaz, A., Shah, M.: Actions Sketch: A Novel Action Representation. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San Diego, CA, June 20-25 (2005)

    Google Scholar 

  18. Yoshinari, K., Michihito, M.: A Human Motion Estimation Method using 3-Successive Video Frames. In: Int. Conf. on Virtual Systems and Multimedia, Gifu, Japan (1996)

    Google Scholar 

  19. Yu, H., Sun, G.-M., Song, W.-X., Li, X.: Human Motion Recognition Based on Neural Networks. In: Int. Conf. on Communications, Circuits and Systems, Hong Kong (May 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fihl, P., Holte, M.B., Moeslund, T.B., Reng, L. (2006). Action Recognition Using Motion Primitives and Probabilistic Edit Distance. In: Perales, F.J., Fisher, R.B. (eds) Articulated Motion and Deformable Objects. AMDO 2006. Lecture Notes in Computer Science, vol 4069. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11789239_39

Download citation

  • DOI: https://doi.org/10.1007/11789239_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36031-5

  • Online ISBN: 978-3-540-36032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics