Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An SVM-Based Masquerade Detection Method with Online Update Using Co-occurrence Matrix

  • Conference paper
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4064))

Abstract

It is required to realize practically useful masquerade detection for secure environments. In this paper, we propose a new masquerade detection method, which is based on support vector machine and using co-occurrence matrix. Our method can be performed with low cost and achieve good detection rate. We also consider online update for adapting to changes of modeled users’ behaviors. We report some experimental results showing our method would be able to work well in real situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Computer intrusion: Detecting masquerades. Statistical Science 16(1), 58–74 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command lines. In: Proceedings of the 2002 International Conference on Dependable Systems and Networks, pp. 219–228 (2002)

    Google Scholar 

  3. Kim, H.S., Cha, S.D.: Empirical evaluation of SVM-based masquerade detection using UNIX commands. Computers & Security 24(2), 160–168 (2005)

    Article  Google Scholar 

  4. Oka, M., Oyama, Y., Abe, H., Kato, K.: Anomaly Detection Using Layered Networks Based on Eigen Co-occurrence Matrix. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 223–237. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M.: Probabilistic techniques for intrusion detection based on computer audit data. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 31(4), 266–274 (2001)

    Article  Google Scholar 

  6. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security 6(3), 151–180 (1998)

    Google Scholar 

  7. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intrusion detection systems. ACM Trans. Inf. Syst. Secur. 3(4), 227–261 (2000)

    Article  Google Scholar 

  8. Fugate, M., Gattiker, J.R.: Anomaly Detection Enhanced Classification in Computer Intrusion Detection. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 186–197. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Zhang, Z., Shen, H.: Application of online-training SVMs for real-time intrusion detection with different considerations. Computer Communications 28(12), 1428–1442 (2005)

    Article  Google Scholar 

  10. Joachims, T.: Making large-scale svm learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1998)

    Google Scholar 

  11. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2005), Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, L., Aritsugi, M. (2006). An SVM-Based Masquerade Detection Method with Online Update Using Co-occurrence Matrix. In: BĂĽschkes, R., Laskov, P. (eds) Detection of Intrusions and Malware & Vulnerability Assessment. DIMVA 2006. Lecture Notes in Computer Science, vol 4064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790754_3

Download citation

  • DOI: https://doi.org/10.1007/11790754_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36014-8

  • Online ISBN: 978-3-540-36017-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics