Abstract
It is required to realize practically useful masquerade detection for secure environments. In this paper, we propose a new masquerade detection method, which is based on support vector machine and using co-occurrence matrix. Our method can be performed with low cost and achieve good detection rate. We also consider online update for adapting to changes of modeled users’ behaviors. We report some experimental results showing our method would be able to work well in real situations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schonlau, M., DuMouchel, W., Ju, W.H., Karr, A.F., Theus, M., Vardi, Y.: Computer intrusion: Detecting masquerades. Statistical Science 16(1), 58–74 (2001)
Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command lines. In: Proceedings of the 2002 International Conference on Dependable Systems and Networks, pp. 219–228 (2002)
Kim, H.S., Cha, S.D.: Empirical evaluation of SVM-based masquerade detection using UNIX commands. Computers & Security 24(2), 160–168 (2005)
Oka, M., Oyama, Y., Abe, H., Kato, K.: Anomaly Detection Using Layered Networks Based on Eigen Co-occurrence Matrix. In: Jonsson, E., Valdes, A., Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 223–237. Springer, Heidelberg (2004)
Ye, N., Li, X., Chen, Q., Emran, S.M., Xu, M.: Probabilistic techniques for intrusion detection based on computer audit data. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 31(4), 266–274 (2001)
Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls. Journal of Computer Security 6(3), 151–180 (1998)
Lee, W., Stolfo, S.J.: A framework for constructing features and models for intrusion detection systems. ACM Trans. Inf. Syst. Secur. 3(4), 227–261 (2000)
Fugate, M., Gattiker, J.R.: Anomaly Detection Enhanced Classification in Computer Intrusion Detection. In: Lee, S.-W., Verri, A. (eds.) SVM 2002. LNCS, vol. 2388, pp. 186–197. Springer, Heidelberg (2002)
Zhang, Z., Shen, H.: Application of online-training SVMs for real-time intrusion detection with different considerations. Computer Communications 28(12), 1428–1442 (2005)
Joachims, T.: Making large-scale svm learning practical. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1998)
Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2005), Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, L., Aritsugi, M. (2006). An SVM-Based Masquerade Detection Method with Online Update Using Co-occurrence Matrix. In: BĂĽschkes, R., Laskov, P. (eds) Detection of Intrusions and Malware & Vulnerability Assessment. DIMVA 2006. Lecture Notes in Computer Science, vol 4064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790754_3
Download citation
DOI: https://doi.org/10.1007/11790754_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36014-8
Online ISBN: 978-3-540-36017-9
eBook Packages: Computer ScienceComputer Science (R0)