Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing

  • Conference paper
Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining (ICDM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4065))

Included in the following conference series:

Abstract

This paper presents a multiobjective genetic algorithm which obtains fuzzy rules for subgroup discovery in disjunctive normal form. This kind of fuzzy rules lets us represent knowledge about patterns of interest in an explanatory and understandable form which can be used by the expert. The evolutionary algorithm follows a multiobjective approach in order to optimize in a suitable way the different quality measures used in this kind of problems. Experimental evaluation of the algorithm, applying it to a market problem studied in the University of Mondragón (Spain), shows the validity of the proposal. The application of the proposal to this problem allows us to obtain novel and valuable knowledge for the experts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: An Overview. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–30. AAAI Press, Menlo Park (1996)

    Google Scholar 

  • Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and estatistical classification. Ellis Horwood (1994)

    Google Scholar 

  • Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, I.: Fast Discovery of Association Rules. In: Fayyad, U. (ed.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)

    Google Scholar 

  • Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press, Menlo Park (1996)

    Google Scholar 

  • Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Principles Of Data Mining And Knowledge Discovery, pp. 78–87 (1997)

    Google Scholar 

  • Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  • Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  • Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Information Sciences 163, 123–133 (2004)

    Article  MathSciNet  Google Scholar 

  • Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems 141, 59–88 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: Methodology and application. Journal Of Artificial Intelligence Research 17, 1–27 (2002)

    Article  Google Scholar 

  • Lavrac, N., Kavsec, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)

    Google Scholar 

  • Kavsek, B., Lavrac, N., Jovanoski, V.: APRIORI-SD: Adapting association rule learning to subgroup discovery. In: Advances In Intelligent Data Analysis, vol. V, pp. 230–241 (2003)

    Google Scholar 

  • Lavrac, N., Flach, P., Zupan, B.: Rule evaluation measures: A unifying view. In: Inductive Logic Programming, pp. 174–185 (1999)

    Google Scholar 

  • Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  • Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Fifth International Conference on Genetic Algorithms (ICGA), San Mateo, CA (1993)

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimisation. In: Giannakoglou, K., et al. (eds.) Evolutionary methods for design, optimisation and control. CIMNE, pp. 95–100 (2002)

    Google Scholar 

  • Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  • Wong, M.L., Leung, K.S.: Data Mining using Grammar Based Genetic Programming and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  • Cordón, O., del Jesus, M.J., Herrera, F.: Genetic Learning of Fuzzy Rule-based Classification Systems Co-operating with Fuzzy Reasoning Methods. International Journal of Intelligent Systems 13, 1025–1053 (1998)

    Article  Google Scholar 

  • Mesonero, M.: Hacia un modelo efectivo de planificación ferial basado en algoritmos genéticos. Departamento de Organización y Marketing, Universidad de Mondragón: Mondragón (2004)

    Google Scholar 

  • Gopalakrishna, S., Lilien, G.L., Williams, J.D., Sequeira, I.K.: Do trade shows pay off. Journal of Marketing 59, 75–83 (1995)

    Article  Google Scholar 

  • Millar, S.: How to get the most of the trade shows. NTC Publishing Group (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M. (2006). Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_27

Download citation

  • DOI: https://doi.org/10.1007/11790853_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36036-0

  • Online ISBN: 978-3-540-36037-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics