Abstract
This paper presents a multiobjective genetic algorithm which obtains fuzzy rules for subgroup discovery in disjunctive normal form. This kind of fuzzy rules lets us represent knowledge about patterns of interest in an explanatory and understandable form which can be used by the expert. The evolutionary algorithm follows a multiobjective approach in order to optimize in a suitable way the different quality measures used in this kind of problems. Experimental evaluation of the algorithm, applying it to a market problem studied in the University of Mondragón (Spain), shows the validity of the proposal. The application of the proposal to this problem allows us to obtain novel and valuable knowledge for the experts.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: An Overview. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–30. AAAI Press, Menlo Park (1996)
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine learning, neural and estatistical classification. Ellis Horwood (1994)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, I.: Fast Discovery of Association Rules. In: Fayyad, U. (ed.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)
Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Fayyad, U., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press, Menlo Park (1996)
Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Principles Of Data Mining And Knowledge Discovery, pp. 78–87 (1997)
Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)
Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)
Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Information Sciences 163, 123–133 (2004)
Ishibuchi, H., Yamamoto, T.: Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems 141, 59–88 (2004)
Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: Methodology and application. Journal Of Artificial Intelligence Research 17, 1–27 (2002)
Lavrac, N., Kavsec, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-SD. Journal of Machine Learning Research 5, 153–188 (2004)
Kavsek, B., Lavrac, N., Jovanoski, V.: APRIORI-SD: Adapting association rule learning to subgroup discovery. In: Advances In Intelligent Data Analysis, vol. V, pp. 230–241 (2003)
Lavrac, N., Flach, P., Zupan, B.: Rule evaluation measures: A unifying view. In: Inductive Logic Programming, pp. 174–185 (1999)
Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading (1989)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Fifth International Conference on Genetic Algorithms (ICGA), San Mateo, CA (1993)
Deb, K., Pratap, A., Agarwal, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimisation. In: Giannakoglou, K., et al. (eds.) Evolutionary methods for design, optimisation and control. CIMNE, pp. 95–100 (2002)
Cordón, O., Herrera, F., Hoffmann, F., Magdalena, L.: Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases. World Scientific, Singapore (2001)
Wong, M.L., Leung, K.S.: Data Mining using Grammar Based Genetic Programming and Applications. Kluwer Academic Publishers, Dordrecht (2000)
Cordón, O., del Jesus, M.J., Herrera, F.: Genetic Learning of Fuzzy Rule-based Classification Systems Co-operating with Fuzzy Reasoning Methods. International Journal of Intelligent Systems 13, 1025–1053 (1998)
Mesonero, M.: Hacia un modelo efectivo de planificación ferial basado en algoritmos genéticos. Departamento de Organización y Marketing, Universidad de Mondragón: Mondragón (2004)
Gopalakrishna, S., Lilien, G.L., Williams, J.D., Sequeira, I.K.: Do trade shows pay off. Journal of Marketing 59, 75–83 (1995)
Millar, S.: How to get the most of the trade shows. NTC Publishing Group (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Berlanga, F., del Jesus, M.J., González, P., Herrera, F., Mesonero, M. (2006). Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_27
Download citation
DOI: https://doi.org/10.1007/11790853_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36036-0
Online ISBN: 978-3-540-36037-7
eBook Packages: Computer ScienceComputer Science (R0)