Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Heegner Point Computations Via Numerical p-Adic Integration

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

Building on ideas of Pollack and Stevens, we present an efficient algorithm for integrating rigid analytic functions against measures obtained from automorphic forms on definite quaternion algebras. We then apply these methods, in conjunction with the Jacquet-Langlands correspondence and the Cerednik-Drinfeld theorem, to the computation of p-adic periods and Heegner points on elliptic curves defined over ℚ and \({\mathbb{Q}}(\sqrt{5})\) which are uniformized by Shimura curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertolini, M., Darmon, H.: Heegner points, p-adic L-functions and the Cerednik-Drinfeld uniformization. Invent. Math. 126, 413–456 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cerednik, I.: Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(k w ). Math. Sbornik 100, 59–88 (1976)

    MathSciNet  Google Scholar 

  3. Darmon, H.: Rational points on modular elliptic curves. In: Conference Board of the Mathematical Sciences. CBMS Regional Conference Series in Mathematics, vol. 101, Washington, DC. American Mathematical Society, Providence (2004)

    Google Scholar 

  4. Darmon, H., Green, P.: Elliptic curves and class fields of real quadratic fields: algorithms and evidence. Experimental Mathematics 11(1), 37–55 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Darmon, H., Pollack, R.: The efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel Journal of Mathematics (to appear)

    Google Scholar 

  6. Drinfeld, V.: Coverings of p-adic symmetric regions. Funct. Anal. Appl. 10, 29–40 (1976)

    MathSciNet  Google Scholar 

  7. Elkies, N.: Shimura curve computations. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 122–133. Springer, Heidelberg (1994)

    Google Scholar 

  8. Greenberg, M.: Heegner points and rigid analytic modular forms, PhD thesis, McGill University (in progress)

    Google Scholar 

  9. Gross, B.H.: Heights and special values of L-series. In: Kisilevsky, H., Labute, J. (eds.) CMS Conference Proc., vol. 7 (1987)

    Google Scholar 

  10. Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math. 25(1), 1–61 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pollack, R., Stevens, G.: Computations with overconvergent modular symbols (in preparation)

    Google Scholar 

  12. Trifković, M.: Stark-Heegner points on elliptic curves defined over imaginary quadratic fields (submitted)

    Google Scholar 

  13. Vignéras, M.F.: Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800. Springer, Berlin (1980)

    MATH  Google Scholar 

  14. Zhang, S.: Heights of Heegner points on Shimura curves. Ann. of Math. 153(1), 127–147 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greenberg, M. (2006). Heegner Point Computations Via Numerical p-Adic Integration. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_26

Download citation

  • DOI: https://doi.org/10.1007/11792086_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics