Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computing CM Points on Shimura Curves Arising from Cocompact Arithmetic Triangle Groups

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

Let \(\Gamma \subset PSL_2({\mathbb R})\) be a cocompact arithmetic triangle group, i.e. a Fuchsian triangle group that arises from the unit group of a quaternion algebra over a totally real number field. The group Γ acts on the upper half-plane \({\mathfrak{H}}\); the quotient \(X_{\mathbb C}=\Gamma \backslash {\mathfrak{H}}\) is a Shimura curve, and there is a map \(j:X_{\mathbb C} \to {\mathbb P}^1_{\mathbb C}\). We algorithmically apply the Shimura reciprocity law to compute CM points \(j(z_D) \in {\mathbb P}^1_{\mathbb C}\) and their Galois conjugates so as to recognize them as purported algebraic numbers. We conclude by giving some examples of how this method works in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alsina, M., Bayer, P.: Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  2. Bruinier, J.H.: Infinite products in number theory and geometry. Jahresber. Deutsch. Math.-Verein. 106(4), 151–184 (2004)

    MATH  MathSciNet  Google Scholar 

  3. Cohen, H.: A course in computational algebraic number theory. Graduate texts in mathematics, vol. 138. Springer, Berlin (1993)

    MATH  Google Scholar 

  4. Eichler, M.: Über die Idealklassenzahl hypercomplexer Systeme. Math. Z. 43, 481–494 (1938)

    Article  MathSciNet  Google Scholar 

  5. Elkies, N.D.: Shimura curve computations. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 1–47. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Gross, B.H., Zagier, D.B.: On singular moduli. J. Reine Angew. Math. 355, 191–220 (1985)

    MATH  MathSciNet  Google Scholar 

  7. Katok, S.: Fuchsian groups. University of Chicago Press, Chicago (1992)

    MATH  Google Scholar 

  8. Kudla, S.S., Rapoport, M., Yang, T.: Derivatives of Eisenstein series and Faltings heights. Compos. Math. 140(4), 887–951 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Reiner, I.: Maximal orders. Clarendon Press, Oxford (2003)

    MATH  Google Scholar 

  10. Roberts, D.P.: Shimura curves analogous to X 0(N), Harvard Ph.D. thesis (1989)

    Google Scholar 

  11. Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85(2), 58–159 (1967)

    Article  MathSciNet  Google Scholar 

  12. Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Kanô memorial lectures. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  13. Takeuchi, K.: Arithmetic triangle groups. J. Math. Soc. Japan 29(1), 91–106 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24, 201–212 (1977)

    MATH  Google Scholar 

  15. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture notes in mathematics, vol. 800. Springer, Berlin (1980)

    MATH  Google Scholar 

  16. Völklein, H.: Groups as Galois groups: an introduction. Cambridge studies in advanced mathematics, vol. 53. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  17. Voight, J.: Quadratic forms and quaternion algebras: Algorithms and arithmetic, Ph.D. thesis, University of California, Berkeley (2005)

    Google Scholar 

  18. Zagier, D.: Traces of singular moduli. In: Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998). Int. Press Lect. Ser., pp. 211–244. Int. Press, Somerville (2002)

    Google Scholar 

  19. Zhang, S.-W.: Gross-Zagier formula for GL 2. Asian J. Math. 5(2), 183–290 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Voight, J. (2006). Computing CM Points on Shimura Curves Arising from Cocompact Arithmetic Triangle Groups. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_29

Download citation

  • DOI: https://doi.org/10.1007/11792086_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics