Abstract
Let \(\Gamma \subset PSL_2({\mathbb R})\) be a cocompact arithmetic triangle group, i.e. a Fuchsian triangle group that arises from the unit group of a quaternion algebra over a totally real number field. The group Γ acts on the upper half-plane \({\mathfrak{H}}\); the quotient \(X_{\mathbb C}=\Gamma \backslash {\mathfrak{H}}\) is a Shimura curve, and there is a map \(j:X_{\mathbb C} \to {\mathbb P}^1_{\mathbb C}\). We algorithmically apply the Shimura reciprocity law to compute CM points \(j(z_D) \in {\mathbb P}^1_{\mathbb C}\) and their Galois conjugates so as to recognize them as purported algebraic numbers. We conclude by giving some examples of how this method works in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alsina, M., Bayer, P.: Quaternion orders, quadratic forms, and Shimura curves. CRM monograph series, vol. 22. American Mathematical Society, Providence (2004)
Bruinier, J.H.: Infinite products in number theory and geometry. Jahresber. Deutsch. Math.-Verein. 106(4), 151–184 (2004)
Cohen, H.: A course in computational algebraic number theory. Graduate texts in mathematics, vol. 138. Springer, Berlin (1993)
Eichler, M.: Über die Idealklassenzahl hypercomplexer Systeme. Math. Z. 43, 481–494 (1938)
Elkies, N.D.: Shimura curve computations. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 1–47. Springer, Heidelberg (1998)
Gross, B.H., Zagier, D.B.: On singular moduli. J. Reine Angew. Math. 355, 191–220 (1985)
Katok, S.: Fuchsian groups. University of Chicago Press, Chicago (1992)
Kudla, S.S., Rapoport, M., Yang, T.: Derivatives of Eisenstein series and Faltings heights. Compos. Math. 140(4), 887–951 (2004)
Reiner, I.: Maximal orders. Clarendon Press, Oxford (2003)
Roberts, D.P.: Shimura curves analogous to X 0(N), Harvard Ph.D. thesis (1989)
Shimura, G.: Construction of class fields and zeta functions of algebraic curves. Ann. of Math. 85(2), 58–159 (1967)
Shimura, G.: Introduction to the arithmetic theory of automorphic functions. Kanô memorial lectures. Princeton University Press, Princeton (1994)
Takeuchi, K.: Arithmetic triangle groups. J. Math. Soc. Japan 29(1), 91–106 (1977)
Takeuchi, K.: Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo 24, 201–212 (1977)
Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lecture notes in mathematics, vol. 800. Springer, Berlin (1980)
Völklein, H.: Groups as Galois groups: an introduction. Cambridge studies in advanced mathematics, vol. 53. Cambridge University Press, New York (1996)
Voight, J.: Quadratic forms and quaternion algebras: Algorithms and arithmetic, Ph.D. thesis, University of California, Berkeley (2005)
Zagier, D.: Traces of singular moduli. In: Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998). Int. Press Lect. Ser., pp. 211–244. Int. Press, Somerville (2002)
Zhang, S.-W.: Gross-Zagier formula for GL 2. Asian J. Math. 5(2), 183–290 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Voight, J. (2006). Computing CM Points on Shimura Curves Arising from Cocompact Arithmetic Triangle Groups. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_29
Download citation
DOI: https://doi.org/10.1007/11792086_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36075-9
Online ISBN: 978-3-540-36076-6
eBook Packages: Computer ScienceComputer Science (R0)