Abstract
The Elliptic Curve Method for integer factorization (ECM) was invented by H. W. Lenstra, Jr., in 1985 [14]. In the past 20 years, many improvements of ECM were proposed on the mathematical, algorithmic, and implementation sides. This paper summarizes the current state-of-the-art, as implemented in the GMP-ECM software.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barrett, P.: Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)
Bernstein, D.J.: Removing redundancy in high-precision Newton iteration, 13 pages (2004), http://cr.yp.to/fastnewton.html
Bernstein, D.J.: Scaled remainder trees, 8 pages (2004), http://cr.yp.to/papers.html#scaledmod
Bostan, A., Lecerf, G., Schost, E.: Tellegen’s principle into practice. In: Proceedings of the 2003 international symposium on Symbolic and algebraic computation (Philadelphia, PA, USA, 2003), pp. 37–44 (2003)
Brent, R.P.: Some integer factorization algorithms using elliptic curves. Australian Computer Science Communications 8, 149–163 (1986), http://web.comlab.ox.ac.uk/oucl/work/richard.brent/pub/pub102.html
Brent, R.P.: Factor: an integer factorization program for the IBM PC. Tech. Rep. TR-CS-89-23, Australian National University, 7 pages (1989), Available at: http://wwwmaths.anu.edu.au/~brent/pub/pub117.html
Brent, R.P.: Factorization of the tenth Fermat number. Mathematics of Computation 68(225), 429–451 (1999)
Brent, R.P., Pollard, J.M.: Factorization of the eighth Fermat number. Mathematics of Computation 36, 627–630 (1981)
Burnikel, C., Ziegler, J.: Fast recursive division. Research Report MPI-I-98-1-022, MPI Saarbrücken (1998)
Charron, T., Daminelli, N., Granlund, T., Leyland, P., Zimmermann, P.: The ECMNET Project, http://www.loria.fr/~zimmerma/ecmnet/
Granlund, T.: GNU MP: The GNU Multiple Precision Arithmetic Library, 4.2 edn. (2006), http://www.swox.se/gmp/#DOC
Hanrot, G., Quercia, M., Zimmermann, P.: The middle product algorithm, I. Speeding up the division and square root of power series AAECC 14(6), 415–438 (2004)
Kruppa, A.: Optimising the enhanced standard continuation of the P–1 factoring algorithm. Diplomarbeit Report, Technische Universität München, 55 pages (2005), http://home.in.tum.de/~kruppa/DA.pdf
Lenstra, H.W.: Factoring integers with elliptic curves. Annals of Mathematics 126, 649–673 (1987)
The Magma computational algebra system. Version V2.12 (2005), http://magma.maths.usyd.edu.au/
Montgomery, P.L.: Evaluating recurrences of form x m + n = f(x m ,x n ,x m − n ) via Lucas chains (1983), Available at: ftp.cwi.nl/pub/pmontgom/Lucas.ps.gz
Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Mathematics of Computation 48(177), 243–264 (1987)
Montgomery, P.L.: An FFT Extension of the Elliptic Curve Method of Factorization. PhD thesis, University of California, Los Angeles (1992), ftp.cwi.nl/pub/pmontgom/ucladissertation.psl.gz
Phatak, D.S., Goff, T.: Fast modular reduction for large wordlengths via one linear and one cyclic convolution. In: Proceedings of 17th IEEE Symposium on Computer Arithmetic (ARITH’17), Cape Cod, MA, USA, pp. 179–186. IEEE Computer Society Press, Los Alamitos (2005)
Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)
Wagstaff, S.S.: The Cunningham project, http://www.cerias.purdue.edu/homes/ssw/cun/
Williams, H.C.: A p + 1 method of factoring. Mathematics of Computation 39(159), 225–234 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zimmermann, P., Dodson, B. (2006). 20 Years of ECM. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_37
Download citation
DOI: https://doi.org/10.1007/11792086_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36075-9
Online ISBN: 978-3-540-36076-6
eBook Packages: Computer ScienceComputer Science (R0)