Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Algorithm for Computing p-Class Groups of Abelian Number Fields

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

For an abelian number field F and an odd prime number p which does not divide the degree [F:ℚ], we propose a new algorithm for computing the p-primary part of the ideal class group of F using Gauss sums and cyclotomic units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, E., Sorenson, J.: Explicit bounds for primes in residue classes. Math. Comp. 65, 1717–1735 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cornacchia, P.: The 2-ideal class groups of Q(ζ ). Nagoya Math. J. 162, 1–18 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Greenberg, R.: On p-adic L-functions and cyclotomic fields II. Nagoya Math. J. 67, 139–158 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Kolyvagin, V.: Euler systems, in The Grothendieck Festschrift II. Prog. Math. 87, 435–483 (1990)

    MathSciNet  Google Scholar 

  5. Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Mathematics, vol. 121. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  6. Mazur, B., Wiles, A.: Class fields of abelian extensions of ℚ. Invent. math. 76, 179–330 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rubin, K.: The main conjecture, Appendix to Lang [5]

    Google Scholar 

  8. Rubin, K.: Kolyvagin’s system of Gauss sums, in Arithmetic Algebraic Geometry. Prog. Math. 89, 309–324 (1991)

    Google Scholar 

  9. Schoof, R.: Minus class groups of the fields of the ℓ-th roots of unity. Math. Comp. 67, 1225–1245 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schoof, R.: Class numbers of real cyclotomic fields of prime conductor. Math. Comp. 72, 913–937 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sumida, H.: Computation of Iwasawa invariants of certain real abelian fields. J. Number Theory 105, 235–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Thaine, F.: On the ideal class groups of real abelian number fields. Ann. Math. 128, 1–18 (1988)

    Article  MathSciNet  Google Scholar 

  13. Washington, L.: Introduction to Cyclotomic Fields, 2nd edn. Graduate Texts in Mathematics, vol. 83. Springer, Heidelberg (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aoki, M., Fukuda, T. (2006). An Algorithm for Computing p-Class Groups of Abelian Number Fields. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_5

Download citation

  • DOI: https://doi.org/10.1007/11792086_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics