Abstract
For an abelian number field F and an odd prime number p which does not divide the degree [F:ℚ], we propose a new algorithm for computing the p-primary part of the ideal class group of F using Gauss sums and cyclotomic units.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bach, E., Sorenson, J.: Explicit bounds for primes in residue classes. Math. Comp. 65, 1717–1735 (1996)
Cornacchia, P.: The 2-ideal class groups of Q(ζ ℓ). Nagoya Math. J. 162, 1–18 (2001)
Greenberg, R.: On p-adic L-functions and cyclotomic fields II. Nagoya Math. J. 67, 139–158 (1977)
Kolyvagin, V.: Euler systems, in The Grothendieck Festschrift II. Prog. Math. 87, 435–483 (1990)
Lang, S.: Cyclotomic Fields I and II. Graduate Texts in Mathematics, vol. 121. Springer, Heidelberg (1990)
Mazur, B., Wiles, A.: Class fields of abelian extensions of ℚ. Invent. math. 76, 179–330 (1984)
Rubin, K.: The main conjecture, Appendix to Lang [5]
Rubin, K.: Kolyvagin’s system of Gauss sums, in Arithmetic Algebraic Geometry. Prog. Math. 89, 309–324 (1991)
Schoof, R.: Minus class groups of the fields of the ℓ-th roots of unity. Math. Comp. 67, 1225–1245 (1998)
Schoof, R.: Class numbers of real cyclotomic fields of prime conductor. Math. Comp. 72, 913–937 (2003)
Sumida, H.: Computation of Iwasawa invariants of certain real abelian fields. J. Number Theory 105, 235–250 (2004)
Thaine, F.: On the ideal class groups of real abelian number fields. Ann. Math. 128, 1–18 (1988)
Washington, L.: Introduction to Cyclotomic Fields, 2nd edn. Graduate Texts in Mathematics, vol. 83. Springer, Heidelberg (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aoki, M., Fukuda, T. (2006). An Algorithm for Computing p-Class Groups of Abelian Number Fields. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_5
Download citation
DOI: https://doi.org/10.1007/11792086_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36075-9
Online ISBN: 978-3-540-36076-6
eBook Packages: Computer ScienceComputer Science (R0)