Abstract
The Generalized Minimum Spanning Tree (GMST) problem requires spanning exactly one node from every cluster in an undirected graph. GMST problems are encountered in telecommunications network planning. A Tabu Search (TS) for the GMST problem is presented in this article. In our computational tests on 194 TSPLIB instances, TS found 152 optimal solutions. For those 42 unsolved instances, our algorithm has improved some previously best known solutions. Lower bounds of some unknown problems are improved by our heuristic relaxation algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Myung, Y.S., Lee, C.H., Tcha, D.W.: On the generialized minimum spanning tree problem. Networks 26, 231–241 (1995)
Feremans, C.: Generial Spanning Trees and Extensions. PhD thesis, Institut de Statistique et de Recherche Opérationnelle, Université Libre de Bruxelles, Bruxelles, Belgium (2001)
Feremans, C., Labbé, M., Laporte, G.: The generalized minimum spanning tree problem: Polyhedral analysis and branch-and-cut-algorithm. Networks 43, 71–86 (2004)
Dror, M., Haouari, M., Chaouachi, J.: Generialized spanning tree. Eur. J. Oper. Tes. 120, 583–592 (2000)
Golden, B., Raghavan, S., Stanojević, D.: Heuristic Search for the Generalized Minimum Spanning Tree Problem. INFORMS J. Comput. 17(3), 290–304 (2005)
Fischetti, M., Salazar-Gonzalez, J.J., Toth, P.: Symmetric generalized traveling salesman problem. Oper. Res. 45, 378–394 (1997)
Reinelt, G.: TSPLIB, A traveling salesman problem library. INFORMS J. Comput. 3, 376–384 (1991)
Pop, P.C., Kern, W., Still, G.: A new relaxation method for the generalized minimum spanning tree problem. Eur. J. Oper. Res. 170, 900–908 (2006)
Haouari, M., Chaouachi, J.S.: Upper and lower bounding strategies for the generalized minimum spanning tree problem. Eur. J. Oper. Res. 171, 632–647 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Z., Che, C.H., Lim, A. (2006). Tabu Search for Generalized Minimum Spanning Tree Problem. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_106
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_106
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)