Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tabu Search for Generalized Minimum Spanning Tree Problem

  • Conference paper
PRICAI 2006: Trends in Artificial Intelligence (PRICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4099))

Included in the following conference series:

Abstract

The Generalized Minimum Spanning Tree (GMST) problem requires spanning exactly one node from every cluster in an undirected graph. GMST problems are encountered in telecommunications network planning. A Tabu Search (TS) for the GMST problem is presented in this article. In our computational tests on 194 TSPLIB instances, TS found 152 optimal solutions. For those 42 unsolved instances, our algorithm has improved some previously best known solutions. Lower bounds of some unknown problems are improved by our heuristic relaxation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Myung, Y.S., Lee, C.H., Tcha, D.W.: On the generialized minimum spanning tree problem. Networks 26, 231–241 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Feremans, C.: Generial Spanning Trees and Extensions. PhD thesis, Institut de Statistique et de Recherche Opérationnelle, Université Libre de Bruxelles, Bruxelles, Belgium (2001)

    Google Scholar 

  3. Feremans, C., Labbé, M., Laporte, G.: The generalized minimum spanning tree problem: Polyhedral analysis and branch-and-cut-algorithm. Networks 43, 71–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dror, M., Haouari, M., Chaouachi, J.: Generialized spanning tree. Eur. J. Oper. Tes. 120, 583–592 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golden, B., Raghavan, S., Stanojević, D.: Heuristic Search for the Generalized Minimum Spanning Tree Problem. INFORMS J. Comput. 17(3), 290–304 (2005)

    Article  MathSciNet  Google Scholar 

  6. Fischetti, M., Salazar-Gonzalez, J.J., Toth, P.: Symmetric generalized traveling salesman problem. Oper. Res. 45, 378–394 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Reinelt, G.: TSPLIB, A traveling salesman problem library. INFORMS J. Comput. 3, 376–384 (1991)

    Article  MATH  Google Scholar 

  8. Pop, P.C., Kern, W., Still, G.: A new relaxation method for the generalized minimum spanning tree problem. Eur. J. Oper. Res. 170, 900–908 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haouari, M., Chaouachi, J.S.: Upper and lower bounding strategies for the generalized minimum spanning tree problem. Eur. J. Oper. Res. 171, 632–647 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Che, C.H., Lim, A. (2006). Tabu Search for Generalized Minimum Spanning Tree Problem. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_106

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36668-3_106

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36667-6

  • Online ISBN: 978-3-540-36668-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics