Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performing Locally Linear Embedding with Adaptable Neighborhood Size on Manifold

  • Conference paper
PRICAI 2006: Trends in Artificial Intelligence (PRICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4099))

Included in the following conference series:

Abstract

Locally linear embedding approach (LLE) is one of most efficient nonlinear dimensionality reduction approaches with good representational capacity for a broader range of manifolds and high computational efficiency. However, LLE and its variants are based on the assumption that the whole data manifold is evenly distributed so that they fail to nicely deal with most real problems that are unevenly distributed. This paper first proposes an approach to judge whether the manifold is even or not, and then logically divides the unevenly distributed manifold into many evenly distributed sub-manifolds, where the neighourhood size for each sub-manifold is automatically determined based on its structure. It is proved, by visualization and classification experiments on benchmark data sets, that our approach is competitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  2. Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research 4, 119–155 (2003)

    Article  MathSciNet  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computing 15, 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data. Proc. Natl. Acad. Sci. U.S.A 100, 5591–5596 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  6. Balasubramanian, M., Schwartz, E.L.: The Isomap Algorithm and Topological Stability. Science 295, 7–7 (2002)

    Article  Google Scholar 

  7. Kouropteva, Olga, Okun, Oleg, Pietikainen, Matti: Incremental locally linear embedding. Pattern Recognition 38, 1764–1767 (2005)

    Article  MATH  Google Scholar 

  8. Abusham, E.E., Ngo, D., Teoh, A.: Fusion of locally linear embedding and principal component analysis for face recognition (FLLEPCA). In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 326–333. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Transactions on Systems, Man and Cybernetics 35, 1098–1107 (2005)

    Article  Google Scholar 

  10. de Ridder, D., Kouropteva, O., Okun, O., et al.: Supervised locally linear embedding. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 333–341. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Xiao, J., Zhou, Z.T., Hu, D.W., et al.: Self-organized Locally Linear Embedding for Nonlinear Dimensionality Reduction. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 101–109. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Yang, L.: Building k edge-disjoint spanning trees of minimum total length for isometric data embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1680–1683 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wen, G., Jiang, L., Wen, J., Shadbolt, N.R. (2006). Performing Locally Linear Embedding with Adaptable Neighborhood Size on Manifold. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_119

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36668-3_119

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36667-6

  • Online ISBN: 978-3-540-36668-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics