Abstract
Locally linear embedding approach (LLE) is one of most efficient nonlinear dimensionality reduction approaches with good representational capacity for a broader range of manifolds and high computational efficiency. However, LLE and its variants are based on the assumption that the whole data manifold is evenly distributed so that they fail to nicely deal with most real problems that are unevenly distributed. This paper first proposes an approach to judge whether the manifold is even or not, and then logically divides the unevenly distributed manifold into many evenly distributed sub-manifolds, where the neighourhood size for each sub-manifold is automatically determined based on its structure. It is proved, by visualization and classification experiments on benchmark data sets, that our approach is competitive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)
Saul, L.K., Roweis, S.T.: Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research 4, 119–155 (2003)
Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computing 15, 1373–1396 (2003)
Donoho, D.L., Grimes, C.: Hessian eigenmaps: Locally linear embedding, techniques for high-dimensional data. Proc. Natl. Acad. Sci. U.S.A 100, 5591–5596 (2003)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)
Balasubramanian, M., Schwartz, E.L.: The Isomap Algorithm and Topological Stability. Science 295, 7–7 (2002)
Kouropteva, Olga, Okun, Oleg, Pietikainen, Matti: Incremental locally linear embedding. Pattern Recognition 38, 1764–1767 (2005)
Abusham, E.E., Ngo, D., Teoh, A.: Fusion of locally linear embedding and principal component analysis for face recognition (FLLEPCA). In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 326–333. Springer, Heidelberg (2005)
Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Transactions on Systems, Man and Cybernetics 35, 1098–1107 (2005)
de Ridder, D., Kouropteva, O., Okun, O., et al.: Supervised locally linear embedding. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 333–341. Springer, Heidelberg (2003)
Xiao, J., Zhou, Z.T., Hu, D.W., et al.: Self-organized Locally Linear Embedding for Nonlinear Dimensionality Reduction. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 101–109. Springer, Heidelberg (2005)
Yang, L.: Building k edge-disjoint spanning trees of minimum total length for isometric data embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1680–1683 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wen, G., Jiang, L., Wen, J., Shadbolt, N.R. (2006). Performing Locally Linear Embedding with Adaptable Neighborhood Size on Manifold. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_119
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_119
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)