Abstract
Partially blind signature was first introduced by Abe and Fujisaki. Subsequently, Abe and Okamoto proposed a provably secure construction for partially blind signature schemes with a formalized definition in their work. In this paper, based on discrete logarithm problem and the Schnorr’s blind signature scheme, we propose a new efficient partially blind signature scheme. Follow the construction proposed by Abe and Okamoto, we prove its security in random oracle model. The computation and communication costs are both reduced in our scheme. It will make privacy-oriented applications which based on partially blind signatures more efficient and suitable for hardware-limited environment, such as smart phones and PDAs.
This work is partially supported by NSFC under the grants 90104005 and 60573030.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chaum, D.: Blind signature for untraceable payments. In: Advances in Cryptology-CRYPTO 1982, pp. 199–203 (1983)
Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)
Chien, H.Y., Jan, J.K., Tseng, Y.M.: RSA-based partially blind signature with low computation. In: Proceedings of the eighth international conference on parallel and distributed systems, pp. 385–389 (2001)
Cao, T.J., et al.: A randomized RSA-based partially blind signature scheme for electronic cash. Computers & Security 24(1), 44–49 (2005)
Shamir, A., Schnorr, C.P.: Cryptanalysis of certain variants of Rabin’s signature scheme. Information proceeding Letters 19, 113–115 (1984)
Kwon, M.S., Cho, Y.K.: Randomization enhanced blind signature schemes based on RSA. IEICE A Fundam 2003 E86-A(3), 730–733 (2003)
Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)
Maitland, G., Boyd, C.: A provably secure restrictive partially blind signature scheme. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 99–114. Springer, Heidelberg (2002)
Huang, H.F., Chang, C.C.: A new design of efficient partially blind signature scheme. Journal of Systems and Software 73(3), 397–403 (2003)
Fan, C.I., Lei, C.L.: Low-computation partially blind signatures for electronic cash. IEICE Transaction on Fundamentals of Electronics, Communications and Computer Sciences E81-A(5), 818–824 (1998)
Fan, C.I.: Improved low-computation partially blind signatures. Applied Mathematics and Computation 145(2-3), 853–867 (2003)
Zhang, F., et al.: Efficient Verifiably Encrypted Signature and Partially Blind Signature from Bilinear Pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003)
Sherman, S.M., et al.: Two Improved Partially Blind Signature Schemes from Bilinear Pairings. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 316–328. Springer, Heidelberg (2005)
Schnorr, C.P.: Discrete log signatures against interactive attacks. In: Schmeck, H., Ungerer, T., Wolf, L. (eds.) ARCS 2002. LNCS, vol. 2299, pp. 1–12. Springer, Heidelberg (2002)
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM CCS, pp. 62–73 (1993)
Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptography 1, 77–94 (1988)
Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–370. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gong, Z., Li, X., Chen, K. (2006). Efficient Partially Blind Signature Scheme with Provable Security. In: Chen, D.Z., Lee, D.T. (eds) Computing and Combinatorics. COCOON 2006. Lecture Notes in Computer Science, vol 4112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11809678_40
Download citation
DOI: https://doi.org/10.1007/11809678_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36925-7
Online ISBN: 978-3-540-36926-4
eBook Packages: Computer ScienceComputer Science (R0)