Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Multiple Clusterings Via k-Modes Algorithm

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

Abstract

Clustering ensembles have emerged as a powerful method for improving both the robustness and the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial or statistical perspectives. A consensus scheme via the k-modes algorithm is proposed in this paper. A combined partition is found as a solution to the corresponding categorical data clustering problem using the k-modes algorithm. This study compares the performance of the k-modes consensus algorithm with other fusion approaches for clustering ensembles. Experimental results demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, Z.: A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining. In: Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (1997)

    Google Scholar 

  2. Topchy, A., Jain, A.K., Punch, W.: A Mixture Model for Clustering Ensembles. In: Proc. SIAM Conf. on Data Mining, pp. 379–390 (2004)

    Google Scholar 

  3. Minaei-Bidgoli, B., Topchy, A.P., Punch, W.F.: A Comparison of Resampling Methods for Clustering Ensembles. IC-AI, 939–945 (2004)

    Google Scholar 

  4. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    MathSciNet  Google Scholar 

  5. Law, M., Topchy, A., Jain, A.K.: Multiobjective Data Clustering. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 424–430 (2004)

    Google Scholar 

  6. Topchy, A., Jain, A., Punch, W.: Combining multiple weak clusterings. In: Proc. Third IEEE International Conference on Data Mining (ICDM 2003) (2003)

    Google Scholar 

  7. Fred, A.L.N.: Finding Consistent Clusters in Data Partitions. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 309–318. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Fern, X.Z., Brodley, C.E.: Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach. In: Proc. of the 20th International Conference on Machine Learning (ICML 2003), Washington DC, USA (2003)

    Google Scholar 

  9. Fischer, B., Buhmann, J.M.: Path-Based Clustering for Grouping of Smooth Curves and Texture Segmentation. IEEE Trans. on PAMI 25, 513–518 (2003)

    Google Scholar 

  10. Minaei-Bidgoli, B., Topchy, A.P., Punch, W.F.: Ensembles of Partitions via Data Resampling. In: International Conference on Information Technology: Coding and Computing (ITCC 2004), pp. 188–192 (2004)

    Google Scholar 

  11. Fred, A.L.N., Jain, A.K.: Data Clustering using Evidence Accumulation. In: Proc. of the 16th Intl. Conference on Pattern Recognition ICPR 2002, Quebec City, pp. 276–280 (2002)

    Google Scholar 

  12. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computing 20, 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  13. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: Application in VLSI domain. In: Proc. 34th ACM/IEEE Design Automation Conference, pp. 526–529 (1997)

    Google Scholar 

  14. Fischer, B., Buhmann, J.M.: Bagging for Path-Based Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1411–1415 (2003)

    Article  Google Scholar 

  15. Dudoit, F.J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19, 1090–1099 (2003)

    Article  Google Scholar 

  16. Topchy, A., Jain, A.K., Punch, W.: Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1866–1881 (2005)

    Article  Google Scholar 

  17. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine learning 2, 139–157 (2000)

    Article  Google Scholar 

  18. Zelnik-Manor, L., Perona, P.: Self-Tuning Spectral Clustering. In: Eighteenth Annual Conference on Neural Information Processing Systems (NIPS) (2004)

    Google Scholar 

  19. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Re-search Logistics Quaterly 2, 83–97 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, H., Kong, F., Li, Y. (2006). Combining Multiple Clusterings Via k-Modes Algorithm. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_34

Download citation

  • DOI: https://doi.org/10.1007/11811305_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics