Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clustering Mixed Data Based on Evidence Accumulation

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

  • 3077 Accesses

Abstract

An Evidence-Based Spectral Clustering (EBSC) algorithm that works well for data with mixed numeric and nominal features is presented. A similarity measure based on evidence accumulation is adopted to define the similarity measure between pairs of objects, which makes no assumptions of the underlying distributions of the feature values. A spectral clustering algorithm is employed on the similarity matrix to extract a partition of the data. The performance of EBSC has been studied on real data sets. Results demonstrate the effectiveness of this algorithm in clustering mixed data tasks. Comparisons with other related clustering schemes illustrate the superior performance of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Huang, Z.: Clustering Large Data Sets with Mixed Numeric and Categorical Values. In: Proceedings of the 1st Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), Singapore, pp. 21–34 (1997)

    Google Scholar 

  2. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2, 283–304 (1998)

    Article  Google Scholar 

  3. Li, C., Biswas, G.: Unsupervised Learning with Mixed Numeric and Nominal Data. IEEE Trans. Knowl. Data Eng. 14, 673–690 (2002)

    Article  Google Scholar 

  4. Fred, A.L.N., Jain, A.K.: Data Clustering using Evidence Accumulation. In: Proc. of the 16th Intl. Conference on Pattern Recognition ICPR 2002, Quebec City, pp. 276–280 (2002)

    Google Scholar 

  5. Ng, A.Y., Jordan, M.I., Weiss, Y.: On Spectral Clustering: Analysis and an algorithm. NIPS, pp. 849–856 (2001)

    Google Scholar 

  6. McKusick, K.B., Thompson, K.: COBWEB/3: A portable implementation Moffett Field. NASA Ames Research Center, CA (1990)

    Google Scholar 

  7. Reich, Y., Fenves, S.: The formation and use of abstract concepts in design. In: Fisher, D., Pazzani, M., Langley, P. (eds.) Concept Formation: Knowledge and Experience in Unsupervised Learning, pp. 323–353. Morgan Kaufmann, Los Altos (1991)

    Chapter  Google Scholar 

  8. Cheeseman, P., Stutz, J.: Bayesian classification (AutoClass): Theory and results. In: Fayyad, U.M., Diatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 153–180. AAAI Press/The MIT Press (1996)

    Google Scholar 

  9. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2, 139–172 (1987)

    Google Scholar 

  10. Topchy, A., Jain, A.K., Punch, W.: A Mixture Model of Clustering Ensembles. In: Proceedings of the SIAM International Conference on Data Mining, Lake Buena Vista, Florida, pp. 22–24 (2004)

    Google Scholar 

  11. Jain, A.K., Fred, A.: Evidence accumulation clustering based on the k-means algorithm. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 442–451. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. He, Z., Xu, X., Deng, S.: A cluster ensemble method for clustering categorical data. Information Fusion 6, 143–151 (2005)

    Article  Google Scholar 

  13. http://www.ics.uci.edu/~mlearn/databases/

  14. Gluck, M., Corter, J.: Information, Uncertainty, and the Utility of Categories. In: Proc. Seventh Ann. Conf. Cognitive Soc., pp. 283–287 (1985)

    Google Scholar 

  15. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics Quaterly 2, 83–97 (1955)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, H., Kong, F., Li, Y. (2006). Clustering Mixed Data Based on Evidence Accumulation. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_38

Download citation

  • DOI: https://doi.org/10.1007/11811305_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics