Abstract
In this paper we propose two versions of Stacked Generalization as the combination module of an ensemble of neural networks. The first version only uses the information provided by expert networks. The second one uses the information provided by experts and the input data of the pattern that is being classified. Finally, we have performed a comparison among 6 classical combination methods and the two versions of Stacked Generalization in order to get the best method. The results show that the methods based on Stacked Generalization are better than classical combination methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tumer, K., Ghosh, J.: Error Correlation and Error Reduction in Ensemble Classifiers. Connection Science 8(3-4), 385–403 (1996)
Raviv, Y., Intratorr, N.: Bootstrapping with Noise: An Effective Regularization Technique. Connection Science, Special issue on Combining Estimators 8, 356–372 (1996)
Hernandez-Espinosa, C., Fernandez-Redondo, M., Torres-Sospedra, J.: Ensembles of Multilayer Feedforward for Classification Problems. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP 2004. LNCS, vol. 3316, pp. 744–749. Springer, Heidelberg (2004)
Hernandez-Espinosa, C., Torres-Sospedra, J., Fernandez-Redondo, M.: New Experiments on Ensembles of Multilayer Feedforward for Classification Problems. In: Proceedings of International Conference on Neural Networks, IJCNN 2005, Montreal, Canada, pp. 1120–1124 (2005)
Torres-Sospedra, J., Fernandez-Redondo, M., Hernandez-Espinosa, C.: A Research on Combination Methods for Ensembles of Multilayer Feedforward. In: Proceedings of International Conference on Neural Networks, IJCNN 2005, Montreal, Canada, pp. 1125–1130 (2005)
Xu, L., Krzyzak, A., Suen, C.: Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 418–435 (1992)
Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft Combination of Neural Classifiers: A Comparative Study. Pattern Recognition Letters 20(4), 429–444 (1999)
Jimenez, D., Walsh, N.: Dynamically Weighted Ensemble Neural Networks for Classification. IEEE World Congress on Computational Intelligence 1, 753–756 (1998)
Wolpert, D.H.: Stacked Generalization. Neural Networks 5(6), 1289–1301 (1994)
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernández-Espinosa, C., Torres-Sospedra, J., Fernández-Redondo, M. (2006). Improving the Combination Module with a Neural Network. In: Huang, DS., Li, K., Irwin, G.W. (eds) Intelligent Computing. ICIC 2006. Lecture Notes in Computer Science, vol 4113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816157_15
Download citation
DOI: https://doi.org/10.1007/11816157_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37271-4
Online ISBN: 978-3-540-37273-8
eBook Packages: Computer ScienceComputer Science (R0)