Abstract
In this literature, fault detection of an induction motor is carried out using the information of stator current. After preprocessing actual data, Fourier and Wavelet transforms are applied to detect characteristics under the healthy and various faulted conditions. The most reliable phase current among 3-phase currents is selected by the fuzzy entropy. Data are trained with a neural network system, and the fault detection algorithm is carried out under the unknown data. The results of the proposed approach based on Fourier and Wavelet transformations show that the faults are properly classified into six categories.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lee, SH., Cheon, SP., Kim, Y., Kim, S. (2006). Fourier and Wavelet Transformations for the Fault Detection of Induction Motor with Stator Current. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_68
Download citation
DOI: https://doi.org/10.1007/978-3-540-37275-2_68
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37274-5
Online ISBN: 978-3-540-37275-2
eBook Packages: Computer ScienceComputer Science (R0)