Abstract
A novel statistical framework for segmentation of the echocardiographic images is presented. The framework begins with presegmentation at a low resolution image and passes the result to the high resolution image for a fast optimal segmentation. We applied Rayleigh distribution to analyze the echocardiographic image, and introduced a posterior probability-based level set model. The model is applied for the pre-segmentation. The pre-segmentation result at the low resolution is used to initialize the front for the high resolution image with a fast scheme. At the high resolution, an efficient statistical active contour model is used to make the curve smoother and drives it closer to the real boundary. Segmentation results show that the statistical framework can extract the boundary accurately and automatically.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sechian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, New York (1999)
Xiao, G., Brady, M., Noble, J., Zhang, Y.: Segmentation of Ultrasound B-mode Images with Intensity in Homogeneity Correction. IEEE Transactions on Medical Imaging 21(1), 48–57 (2002)
Chen, Y., Thinuvenkadam, S.: On the Incorporation of Shape Priors into Geometric Active Contours. In: IEEE Workshop on Variational and Level set Methods in Computer Vision, pp. 45–152 (2001)
Caselles, V., Kimmel, R., Spairo, G.: Geodesic Active Contours. International Journal of Computer Vision 22, 61–79 (1997)
Yezzi, A., Andy Jr., T., Alan, W.: A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations. Journal of Visual Communication and Image Representation 13, 195–216 (2002)
Chan, T.F.: Active Contours without Edges. IEEE Transaction On Image Processing 10(2), 266–277 (2001)
Nikos, P., Olivier, M.G., Visvanathan, R.: Gradient Vector Flow Fast Geometric Active Contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(3), 402–407 (2004)
Pascal, M., Philippe, R., Francois, G., Prederic, G.: Influence of the Noise Model on Level Set Active Contour Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 799–803 (2004)
Nikos, P.: A Level Set Approach for Shape-driven Segmentation and Tracking of the Left Ventricle. IEEE Transactions on medical imaging 22(6), 773–776 (2003)
Zhao, Z., Aylward, S.R., Teoh, E.-K.: A novel 3D partitioned active shape model for segmentation of brain MR images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 221–228. Springer, Heidelberg (2005)
Acton, S.T., Bovik, A.C., Crawford, M.M.: Anisotropic diffusion pyramids for image segmentation. In: IEEE Conference on Image Processing, pp. 478–482 (1994)
Perona, P., Malik, J.: Scale-space and Edge Detection using Anisotropic Diffusion. IEEE Transaction On Pattern Anal. and Mach. Intell. 12(6), 629–639 (1990)
Alessandro, S., Cristiana, C., Elena, M., Claudio, L.: Maximum Likelihood Segmentation of Ultrasound Images with Rayleigh Distribution. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 52(6), 947–960 (2005)
Navalgund, R., Sumat, M., Zhu, H.: Ultrasound speckle statistics variations with imaging systems impulse response. In: IEEE Ultrasonics Symposium, vol. 3, pp. 1435–1440 (1990)
Ning, L., Weichuan, Y., James, S.D.: Combinative Multi-scale Level Set Framework for Echocardiographic Image Segmentation. Medical Image Analysis 7, 529–537 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yu, G., Wang, C., Li, P., Miao, Y., Bian, Z. (2006). A Statistical Level Set Framework for Segmentation of Left Ventricle. In: Zheng, N., Jiang, X., Lan, X. (eds) Advances in Machine Vision, Image Processing, and Pattern Analysis. IWICPAS 2006. Lecture Notes in Computer Science, vol 4153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821045_42
Download citation
DOI: https://doi.org/10.1007/11821045_42
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37597-5
Online ISBN: 978-3-540-37598-2
eBook Packages: Computer ScienceComputer Science (R0)