Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Bayesian Estimation Approach to Super-Resolution Reconstruction for Face Images

  • Conference paper
Advances in Machine Vision, Image Processing, and Pattern Analysis (IWICPAS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4153))

  • 1298 Accesses

Abstract

Most previous super-resolution (SR) approaches are implemented with two individual cascade steps, image registration and image fusion, which handicaps the incorporation of the structural information of the objects of interest, e.g. human faces, into SR in a parallel way. This prior information is beneficial to either robust motion estimation or fusion with higher quality. In this paper, SR reconstruction is formulated as Bayesian state estimation of location and appearance parameters of a face model. In addition, a sequential Monte Carlo (SMC) based algorithm is proposed to achieve the probabilistic state estimation, i.e. SR reconstruction in our formulation. Image alignment and image fusion are combined into one unified framework in the proposed approach, in which the prior information from the face model is incorporated into both registration and fusion process of SR. Experiments performed on synthesized frontal face sequences show that the proposed approach gains superior performance in registration as well as reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, S., Kanade, T.: Limits on Super-Resolution and How to Break them. IEEE Trans. Pattern Analysis and Machine Intelligence 9, 1167–1183 (2002)

    Article  Google Scholar 

  2. Torre, D.l., Yacoob, Y., et al.: A probabilistic framework for rigid and non-rigid appearance based tracking and recognition. In: Inter. Conf. Face Recognition and Gesture Analysis, Grenoble, France, pp. 491–498 (2000)

    Google Scholar 

  3. Robinson, D., Milanfar, P.: Fundamental Performance Limits in Image Registration. IEEE Trans. Image Processing 6, 1185–1199 (2004)

    Article  Google Scholar 

  4. Baker, S., Matthews, I.: Lucas-Kanade 20 Years On:A Unifying Framework. Inter. J. Computer Vision 3, 221–255 (2004)

    Article  Google Scholar 

  5. Capel, D.P., Zisserman, A.: Super-resolution from multiple views using learnt image models. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 627–634 (2001)

    Google Scholar 

  6. Liu, C., Shum, H.Y., et al.: A two-step approach to hallucinating faces: global parametric model and local nonparametric model. In: Proc. of CVPR 2001, Hawaii, USA, pp. 192–198 (2001)

    Google Scholar 

  7. Wang, X., Tang, X.: Hallucinating face by eigentransformation. IEEE Trans. Systems, Man and Cybernetics, Part C 3, 425–434 (2005)

    Article  Google Scholar 

  8. Jordan, M.I.: Graphical models. Statistical Science 1, 140–155 (2004)

    Article  Google Scholar 

  9. Moghaddam, B., Pentland, A.: Probabilistic Visual Learning for Object Representation. IEEE Trans. Pattern Analysis and Machine Intelligence 7, 696–710 (1997)

    Article  Google Scholar 

  10. Sudderth, E.B., Ihler, A.T., et al.: Nonparametric Belief Propagation. In: Proc. of CVPR 2003, Madison, WI, USA, pp. 605–612 (2003)

    Google Scholar 

  11. Arulampalam, S., Maskell, S., et al.: A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking. IEEE Trans. Signal Processing 2, 174–188 (2002)

    Article  Google Scholar 

  12. Chang, C., Ansari, R., et al.: Cyclic articulated human motion tracking by sequential ancestral simulation. In: Proc. of CVPR 2004, Washington, DC, USA, pp. 45–52 (2004)

    Google Scholar 

  13. Khan, Z., Balch, T., et al.: MCMC-Based Particle Filtering for Tracking a Variable Number of Interacting Targets. IEEE Trans. Pattern Analysis and Machine Intelligence 11, 1805–1918 (2005)

    Article  Google Scholar 

  14. Khan, Z., Balch, T., et al.: A Rao-Blackwellized Particle Filter for Eigen Tracking. In: Proc. of CVPR 2004, Washington, DC, USA, pp. 980–986 (2004)

    Google Scholar 

  15. Martinez, A.M., Benavente, R.: The AR face database. CVC Technical Report 24 (1998)

    Google Scholar 

  16. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning Low-Level Vision. Int. J. Computer Vision 1, 25–47 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, H., Fan, X., Qi, C., Zhu, S. (2006). A Bayesian Estimation Approach to Super-Resolution Reconstruction for Face Images. In: Zheng, N., Jiang, X., Lan, X. (eds) Advances in Machine Vision, Image Processing, and Pattern Analysis. IWICPAS 2006. Lecture Notes in Computer Science, vol 4153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821045_43

Download citation

  • DOI: https://doi.org/10.1007/11821045_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37597-5

  • Online ISBN: 978-3-540-37598-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics