Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Automatic Color-Texture Image Segmentation by Using Active Contours

  • Conference paper
Advances in Machine Vision, Image Processing, and Pattern Analysis (IWICPAS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4153))

Abstract

In this paper, we propose a novel method for unsupervised color-texture segmentation. The approach aims at combining color and texture features and active contours to build a fully automatic segmentation algorithm. By fully automatic, we mean the steps of region initialization and calculation of the number of regions are performed automatically by the algorithm. Furthermore, the approach combines boundary and region information for accurate region boundary localization. We validate the approach by examples of synthetic and natural color-texture image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akaike, H.: A New Look at the Statistical Model Identification. IEEE Trans. on Automatic Control 19, 716–723 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allili, M.S., Ziou, D.: An Automatic Segmentation Combining Mixture Analysis and Adaptive Region Information: A Level Set Approach. In: Proceedings of IEEE CRV, pp. 73–80 (2005)

    Google Scholar 

  3. Allili, M.S., Bouguila, N., Ziou, D.: Generalized Gaussian Mixture and MML, Technical Report

    Google Scholar 

  4. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying. IEEE Trans. on PAMI 24(8), 1026–1038 (2002)

    Google Scholar 

  5. Caselles, V., Kimmel, R., Shapiro, G.: Geodesic Active Contours. In: IJCV, vol. 22, pp. 61–79 (1997)

    Google Scholar 

  6. Freixenet, J., Munoz, X., Marti, J., Llado, X.: Colour Texture Segmentation by Region-Boundary Cooperation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 250–261. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image Indexing Using Color Correlograms. In: Proceedings of IEEE CVPR, pp. 762–768 (1997)

    Google Scholar 

  8. Jain, A., Farrokhnia, F.: Unsupervised Texture Segmentation by Using Gabor Filters. Pattern Recognition 24, 1167–1186 (1991)

    Article  Google Scholar 

  9. Liapis, S., Sifakis, E., Tziritas, G.: Colour and Texture Segmentation Using Wavelet Frame Analysis, Deterministic Relaxation and Fast Marching Algorithms. JVCIR 15(1), 1–26 (2004)

    Article  Google Scholar 

  10. Osher, S., Sethian, J.: Fronts Propagating with Curvature-dependant Speed: Algorithms Based on Hammilton-Jacobi Formulations. Journal of Computational Physics 22, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  11. Paragios, N., Deriche, R.: Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation. In: IJCV, pp. 223–247 (2002)

    Google Scholar 

  12. Rousson, M., Brox, T., Deriche, R.: Active Unsupervised Texture Segmentation on a Diffusion Based Feature Space. In: Proceedings of IEEE CVPR, vol. 2, pp. 699–704 (2003)

    Google Scholar 

  13. Sifakis, E., Garcia, C., Tziritas, G.: Bayesian Level Sets for Image Segmentation. JVCIR 13, 44–64 (2002)

    Article  Google Scholar 

  14. Yezzi, A., Tsai, A., Willsky, A.: A Fully Global Approach to Image Segmentation Via Couples Curve Evolution Equations. JVCIR 13, 195–216 (2002)

    Article  Google Scholar 

  15. Zhu, S., Yuille, A.: Region competition: Unifying Snakes, Region Growing and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. PAMI 18, 884–900 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Allili, M.S., Ziou, D. (2006). Automatic Color-Texture Image Segmentation by Using Active Contours. In: Zheng, N., Jiang, X., Lan, X. (eds) Advances in Machine Vision, Image Processing, and Pattern Analysis. IWICPAS 2006. Lecture Notes in Computer Science, vol 4153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821045_52

Download citation

  • DOI: https://doi.org/10.1007/11821045_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37597-5

  • Online ISBN: 978-3-540-37598-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics