Abstract
In this paper, we propose a novel method for unsupervised color-texture segmentation. The approach aims at combining color and texture features and active contours to build a fully automatic segmentation algorithm. By fully automatic, we mean the steps of region initialization and calculation of the number of regions are performed automatically by the algorithm. Furthermore, the approach combines boundary and region information for accurate region boundary localization. We validate the approach by examples of synthetic and natural color-texture image segmentation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akaike, H.: A New Look at the Statistical Model Identification. IEEE Trans. on Automatic Control 19, 716–723 (1974)
Allili, M.S., Ziou, D.: An Automatic Segmentation Combining Mixture Analysis and Adaptive Region Information: A Level Set Approach. In: Proceedings of IEEE CRV, pp. 73–80 (2005)
Allili, M.S., Bouguila, N., Ziou, D.: Generalized Gaussian Mixture and MML, Technical Report
Carson, C., Belongie, S., Greenspan, H., Malik, J.: Blobworld: Image Segmentation Using Expectation-Maximization and Its Application to Image Querying. IEEE Trans. on PAMI 24(8), 1026–1038 (2002)
Caselles, V., Kimmel, R., Shapiro, G.: Geodesic Active Contours. In: IJCV, vol. 22, pp. 61–79 (1997)
Freixenet, J., Munoz, X., Marti, J., Llado, X.: Colour Texture Segmentation by Region-Boundary Cooperation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 250–261. Springer, Heidelberg (2004)
Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R.: Image Indexing Using Color Correlograms. In: Proceedings of IEEE CVPR, pp. 762–768 (1997)
Jain, A., Farrokhnia, F.: Unsupervised Texture Segmentation by Using Gabor Filters. Pattern Recognition 24, 1167–1186 (1991)
Liapis, S., Sifakis, E., Tziritas, G.: Colour and Texture Segmentation Using Wavelet Frame Analysis, Deterministic Relaxation and Fast Marching Algorithms. JVCIR 15(1), 1–26 (2004)
Osher, S., Sethian, J.: Fronts Propagating with Curvature-dependant Speed: Algorithms Based on Hammilton-Jacobi Formulations. Journal of Computational Physics 22, 12–49 (1988)
Paragios, N., Deriche, R.: Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation. In: IJCV, pp. 223–247 (2002)
Rousson, M., Brox, T., Deriche, R.: Active Unsupervised Texture Segmentation on a Diffusion Based Feature Space. In: Proceedings of IEEE CVPR, vol. 2, pp. 699–704 (2003)
Sifakis, E., Garcia, C., Tziritas, G.: Bayesian Level Sets for Image Segmentation. JVCIR 13, 44–64 (2002)
Yezzi, A., Tsai, A., Willsky, A.: A Fully Global Approach to Image Segmentation Via Couples Curve Evolution Equations. JVCIR 13, 195–216 (2002)
Zhu, S., Yuille, A.: Region competition: Unifying Snakes, Region Growing and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. PAMI 18, 884–900 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Allili, M.S., Ziou, D. (2006). Automatic Color-Texture Image Segmentation by Using Active Contours. In: Zheng, N., Jiang, X., Lan, X. (eds) Advances in Machine Vision, Image Processing, and Pattern Analysis. IWICPAS 2006. Lecture Notes in Computer Science, vol 4153. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821045_52
Download citation
DOI: https://doi.org/10.1007/11821045_52
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37597-5
Online ISBN: 978-3-540-37598-2
eBook Packages: Computer ScienceComputer Science (R0)