Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Kleene Equality for Graphs

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

In order to generalize the Kleene theorem from the free monoid to richer algebraic structures, we consider the non deterministic acceptance by a finite automaton of subsets of vertices of a graph. The subsets accepted in such a way are the equational subsets of vertices of the graph in the sense of Mezei and Wright. We introduce the notion of deterministic acceptance by finite automaton. A graph satisfies the Kleene equality if the two acceptance modes are equivalent, and in this case, the equational subsets form a Boolean algebra. We establish that the infinite grid and the transition graphs of deterministic pushdown automata satisfy the Kleene equality and we present families of graphs in which the free product of graphs preserves the Kleene equality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Büchi, J.: Regular canonical systems. Arch. Math. Logik Grundlag. 6, 91–111 (1964)

    MATH  Google Scholar 

  2. Carayol, A.: Regular sets of higher-order pushdown stacks. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 168–179. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996)

    Google Scholar 

  4. Cayley, A.: On the theory of groups. Proc. London Math. Soc. 9, 126–133 (1878)

    Article  Google Scholar 

  5. Courcelle, B.: On recognizable sets and tree automata. In: Resolution of Equations in Algebraic Structures. Academic Press, London (1989)

    Google Scholar 

  6. Eilenberg, S., Schützenberger, M.: Rational sets in commutative monoids. J. Algebra 13, 344–353 (1969)

    Google Scholar 

  7. Ginsburg, S., Spanier, E.: Bounded algol-like languages. Trans. Amer. Math. Soc. 113, 333–368 (1964)

    MATH  MathSciNet  Google Scholar 

  8. Muller, D., Schupp, P.: The theory of ends, pushdown automata, and second-order logic. TCS 37, 51–75 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Mezei, J., Wright, J.: Algebraic automata and context free sets. Information and Control 11, 3–29 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sakarovich, J.: On regular trace languages. TCS 52, 59–75 (1987)

    Article  Google Scholar 

  11. Sénizergues, G.: On the rational subsets of the free group. Acta Informatica 33, 281–296 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carayol, A., Caucal, D. (2006). The Kleene Equality for Graphs. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_19

Download citation

  • DOI: https://doi.org/10.1007/11821069_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics