Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Partially Commutative Inverse Monoids

  • Conference paper
Mathematical Foundations of Computer Science 2006 (MFCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4162))

Abstract

Free partially commutative inverse monoids are investigated. Analogously to free partially commutative monoids (trace monoids), free partially commutative inverse monoid are the quotients of free inverse monoids modulo a partially defined commutation relation on the generators. An O(n log(n)) algorithm on a RAM for the word problem is presented, and NP-completeness of the generalized word problem and the membership problem for rational sets is shown. Moreover, free partially commutative inverse monoids modulo a finite idempotent presentation are studied. For these monoids, the word problem is decidable if and only if the complement of the commutation relation is transitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bekic, H.: Definable operation in general algebras, and the theory of automata and flowcharts. In: Bekic, H. (ed.) Programming Languages and their Definition. LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  2. Cori, R., Perrin, D.: Automates et commutations partielles. RAIRO — Inform. Théor. Appl. 19, 21–32 (1985)

    MATH  MathSciNet  Google Scholar 

  3. Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990)

    MATH  Google Scholar 

  4. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore (1995)

    Google Scholar 

  5. Droms, C.: Graph groups, coherence and three-manifolds. J. Algebra 106(2), 484–489 (1985)

    Article  MathSciNet  Google Scholar 

  6. Kapovich, I., Weidmann, R., Myasnikov, A.: Foldings, graphs of groups and the membership problem. Internat. J. Algebra Comput. 15(1), 95–128 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to reasoning about infinite-state systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 36–52. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Lohrey, M., Ondrusch, N.: Inverse monoids: decidability and complexity of algebraic questions. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 664–675. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Margolis, S., Meakin, J.: E-unitary inverse monoids and the Cayley graph of a group presentation. J. Pure Appl. Algebra 58(1), 45–76 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  10. Margolis, S., Meakin, J.: Inverse monoids, trees, and context-free languages. Trans. Amer. Math. Soc. 335(1), 259–276 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Margolis, S., Meakin, J., Sapir, M.: Algorithmic problems in groups, semigroups and inverse semigroups. In: Semigroups, Formal Languages and Groups, pp. 147–214. Kluwer, Dordrecht (1995)

    Google Scholar 

  12. Meakin, J., Sapir, M.: The word problem in the variety of inverse semigroups with Abelian covers. J. London Math. Soc. (2) 53(1), 79–98 (1996)

    MATH  MathSciNet  Google Scholar 

  13. Mihailova, K.A.: The occurrence problem for direct products of groups. Math. USSR Sbornik 70, 241–251 (1966) (English translation)

    Google Scholar 

  14. Munn, W.: Free inverse semigroups. Proc. London Math. Soc. 30, 385–404 (1974)

    Article  MathSciNet  Google Scholar 

  15. Petrich, M.: Inverse semigroups. Wiley, Chichester (1984)

    MATH  Google Scholar 

  16. Stephen, J.: Presentations of inverse monoids. J. Pure Appl. Algebra 63, 81–112 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Veloso da Costa, A.: Γ-Produtos de Monóides e Semigrupos. PhD thesis, Universidade do Porto (2003)

    Google Scholar 

  18. Walukiewicz, I.: Pushdown processes: games and model-checking. Inform. and Comput. 164(2), 234–263 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wrathall, C.: The word problem for free partially commutative groups. J. Symbolic Comput. 6(1), 99–104 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diekert, V., Lohrey, M., Miller, A. (2006). Partially Commutative Inverse Monoids. In: Královič, R., Urzyczyn, P. (eds) Mathematical Foundations of Computer Science 2006. MFCS 2006. Lecture Notes in Computer Science, vol 4162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11821069_26

Download citation

  • DOI: https://doi.org/10.1007/11821069_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37791-7

  • Online ISBN: 978-3-540-37793-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics