Abstract
LTSA (local tangent space alignment) is a recently proposed method for manifold learning, which can efficiently learn nonlinear embedding low-dimensional coordinates of high-dimensional data, and can also reconstruct high dimensional coordinates from embedding coordinates. But it ignores the label information conveyed by data samples, and can not be used for classification directly. In this paper, a transductive manifold classification method, called QLAT (LDA/QR and LTSA based Transductive classifier) is presented, which is based on LTSA and TCM-KNN (transduction confidence machine-k nearest neighbor). In the algorithm, local low-dimensional coordinates is constructed using 2-stage LDA/QR method, which not only utilize the label information of sample data, but also conquer the singularity problem of traditional LDA, then the global low-dimensional embedding manifold is obtained by local affine transforms, finally TCM-KNN method is used for classification on the low-dimensional manifold. Experiments on labeled and unlabeled mixed data set illustrate the effectiveness of the method.
Chapter PDF
Similar content being viewed by others
References
Seung, S., Daniel, D.L.: The manifold ways of perception. Science 290(5500), 2268–2269 (2000)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)
Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
David, L.D., Caroe, G.: Hessian eigenmaps Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America 100(10), 5591–5596 (2003)
Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)
Yan, S.C., Zhang, H.J., Hu, Y.X., et al.: Discriminant Analysis on Embedded Manifold. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 121–132. Springer, Heidelberg (2004)
Proedrou, K., Nouretdinov, I., Vovk, V.: Transductive Confidence Machines for Pattern Recognition. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 381–390. Springer, Heidelberg (2002)
Li, F.Y., Wechsler, H.: Open Set Face Recognition Using Transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1686–1697 (2005)
Ye, J.P., Li, Q.: A two-stage linear discriminant analysis via QR-decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 929–941 (2005)
Min, W.L., Lu, K., He, X.F.: Locality pursuit embedding. Pattern Recognition 37(4), 781–788 (2004)
Wu, Y.M., Chan, K.L., Wang, L.: Face recognition based on discriminative manifold learning. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 171–174 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yin, J., Liu, X., Feng, Z., Dong, J. (2006). A Local Tangent Space Alignment Based Transductive Classification Algorithm. In: Schwenker, F., Marinai, S. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2006. Lecture Notes in Computer Science(), vol 4087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11829898_9
Download citation
DOI: https://doi.org/10.1007/11829898_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37951-5
Online ISBN: 978-3-540-37952-2
eBook Packages: Computer ScienceComputer Science (R0)