Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Emergence of Communication by Evolving Dynamical Systems

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

In the context of minimally cognitive behavior, we used multi-robotic systems to investigate the emergence of communication and cooperation during the evolution of recurrent neural networks. The networks are systematically analyzed to identify their relevant dynamical properties. Evolution efficiently adapts these properties through small structural changes within the networks when specific environmental conditions are altered, such as the number of interacting robots. The findings signify the importance of reducing the predefined knowledge about resulting behaviors, dynamical properties of control, and the topology of neural networks in order to utilize the strength of the Evolutionary Robotics approach to Artificial Life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Port, R., van Gelder, T.: Mind as Motion. MIT Press, Cambridge (1995)

    Google Scholar 

  2. Thelen, E., Smith, L.: A Dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge (1994)

    Google Scholar 

  3. Pasemann, F.: Neuromodules: A Dynamical Systems Approach to Brain Modellling. In: Supercomputing in Brain Research: From Tomography to Neural Networks, pp. 331–347. World Scientific, Singapore (1995)

    Google Scholar 

  4. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)

    Article  Google Scholar 

  5. van Duijn, M., Keijzer, F., Franken, D.: Principles of minimal cognition. Adaptive Behavior 14(2) (in press, 2006)

    Google Scholar 

  6. Maturana, H.R., Varela, F.J.: The Tree of Knowledge: The Biological Roots of Human Understanding. rev. edn. Shambhala (1992)

    Google Scholar 

  7. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. MIT Press, Cambridge (2000)

    Google Scholar 

  8. Harvey, I., Di Paolo, E.A., Wood, R., Quinn, M., Tuci, E.: Evolutionary robotics: A new scientific tool for studying cognition. Artificial Life 11(1-2), 79–98 (2005)

    Article  Google Scholar 

  9. Langton, C.: Artificial Life: An Overview. MIT Press, Cambridge (1995)

    Google Scholar 

  10. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  11. Pasemann, F.: Complex dynamics and the structure of small neural networks. Network: Computation in Neural Systems 13(2), 195–216 (2002)

    MATH  Google Scholar 

  12. MacLennan: Synthetic ecology: an approach to the study of communication. In: Langton, C., Taylor, C., Farmer, J., Rasmussen, S. (eds.) Proc. Artificial Life II. Addison-Wesley, Reading (1991)

    Google Scholar 

  13. Werner, G., Dyer, D.: Evolution of communication in artificial organisms. In: Langton, C., Taylor, C., Farmer, J., Rasmussen, S. (eds.) Proc. Artificial Life II. Addison Wesley, Reading (1991)

    Google Scholar 

  14. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 361(1811), 2321–2344 (2003)

    Article  MathSciNet  Google Scholar 

  15. Marocco, D., Nolfi, S.: Emergence of communication in teams of embodied and situated agents. In: Proc. of the 6th Int. Conference on the Evolution of Language (2006)

    Google Scholar 

  16. Wischmann, S., Hülse, M., Knabe, J., Pasemann, F.: Synchronization of internal neural rhythms in multi-robotic systems. Adaptive Behavior 14(2) (in press, 2006)

    Google Scholar 

  17. Pasemann, F.: Dynamics of a single model neuron. International Journal of Bifurcation and Chaos 2, 271–278 (1993)

    Article  MathSciNet  Google Scholar 

  18. Hülse, M., Wischmann, S., Pasemann, F.: Structure and function of evolved neuro-controllers for autonomous robots. Connection Science 16(4), 249–266 (2004)

    Article  Google Scholar 

  19. Dieckmann, U.: Coevolution as an autonomous learning strategy for neuromodules. In: Supercomputing in Brain Research: From Tomography to Neural Networks, pp. 427–432. World Scientific, Singapore (1995)

    Google Scholar 

  20. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Reviews of Modern Physics 70(1), 223–287 (1998)

    Article  Google Scholar 

  21. Di Paolo, E.A.: Organismically-Inspired Robotics: Homeostatic Adaptation and Teleology Beyond the Closed Sensorimotor Loop. In: Dynamical Systems Approach to Embodiment and Sociality. Advanced Knowledge International, pp. 19–42 (2003)

    Google Scholar 

  22. Beer, R.D.: Toward the evolution of dynamical neural networks for minimally cognitive behavior. In: From Animals to Animats 4: Proc. of the 4th Int. Conference on Simulation of Adaptive Behavior, pp. 421–429 (1996)

    Google Scholar 

  23. Beer, R.D.: Arches and stones in cognitive architecture. Adaptive Behavior 11(4), 299–305 (2003)

    Article  Google Scholar 

  24. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    Google Scholar 

  25. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Scientific American 269(6), 102–109 (1993)

    Article  Google Scholar 

  26. Bays, P.M., Flanagan, J.R., Wolpert, D.M.: Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biology 4(2) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wischmann, S., Pasemann, F. (2006). The Emergence of Communication by Evolving Dynamical Systems. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_64

Download citation

  • DOI: https://doi.org/10.1007/11840541_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics