Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Behavioral Analysis of Mobile Robot Trajectories Using a Point Distribution Model

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

  • 1756 Accesses

Abstract

In recent years, the advent of robust tracking systems has enabled behavioral analysis of individuals based on their trajectories. An analysis method based on a Point Distribution Model (PDM) is presented here. It is an unsupervised modeling of the trajectories in order to extract behavioral features. The applicability of this method has been demonstrated on trajectories of a realistically simulated mobile robot endowed with various controllers that lead to different patterns of motion. Results show that this analysis method is able to clearly classify controllers in the PDM-transformed space, an operation extremely difficult in the original space. The analysis also provides a link between the behaviors and trajectory differences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bertini, M., Del Bimbo, A., Nunziati, W.: Highlights modeling and detection in sports videos. Pattern Analysis and Application 7(4), 411–421 (2005)

    Article  Google Scholar 

  2. Cootes, T., Taylor, C., Cooper, D.: Active shape-models - their training and applications. Vision and Image Understanding, 38–59 (1995)

    Google Scholar 

  3. de Meneses, Y.L., Roduit, P., Luisier, F., Jacot, J.: Trajectory analysis for sport and video surveillance. Electronic Letters on Computer Vision and Image Analysis 5(3), 148–156 (2005)

    Google Scholar 

  4. Egerstedt, M., Balch, T., Dellaert, F., Delmotte, F., Khan, Z.: What are the ants doing? vision-based tracking and reconstruction of control programs. In: IEEE International Conference on Robotics and Automation, pp. 4193–4198. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  5. Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using adaptive tracking to classify and monitor activities in a site. In: Conference on Computer Vision and Pattern Recognition, pp. 22–29. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  6. Hayes, A.T., Martinoli, A., Goodman, R.M.: Distributed odor source localization. In: Gardner, J.W., Nagle, H.T., Persaud (eds.) Special Issue in Artificial Olfaction, IEEE Sensors Journal, vol. 2, pp. 260–271 (2002)

    Google Scholar 

  7. Jackson, J.: Principal components and factor analysis: part 1. Journal of Quality Technology 12, 201–213 (1980)

    Google Scholar 

  8. Johnson, N., Hogg, D.: Representation and synthesis of behaviour using gaussian mixtures. Image and Vision Computing 20, 889–894 (2002)

    Article  Google Scholar 

  9. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced Robotics Systems 1(1), 29–42 (2004)

    Google Scholar 

  10. Nehmzov, U.: Quantitative analysis of robot-environment interaction towards ”scientific mobile robotics”. Robotics and Autonomous Systems 44, 55–68 (2003)

    Article  Google Scholar 

  11. Owens, J., Hunter, A., Fletcher, E.: Novelty Detection in Video Surveillance Using Hierarchical Neural Networks. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1249–1254. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Porikli, F.: Learning object trajectory patterns by spectral clustering. In: IEEE Conference on Multimedia and Expo., vol. 2, pp. 1171–1174. IEEE, Los Alamitos (2004)

    Google Scholar 

  13. Remagnino, P., Tan, T., Baker, K.: Agent orientated annotation in model based visual surveillance. In: Sixth International Conference on Computer Vision, p. 857. IEEE Computer Society, Los Alamitos (1998)

    Google Scholar 

  14. Sas, C., O’Hare, G.M.P., Reilly, R.G.: A Performance Analysis of Movement Patterns. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 954–961. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Sas, C., O’Hare, G., Reilly, R.: Virtual environment trajectory analysis: a basis for navigational assistance and scene adaptivity. Future Generation Computer Systems 21(7), 1157–1166 (2005)

    Article  Google Scholar 

  16. Schöner, G., Dose, M., Engels, C.: Dynamics of behavior: theory and applications for autonomous robot architecture. Robotics and Autonomous Systems 16, 213–245 (1995)

    Article  Google Scholar 

  17. Smithers, T.: On quantitative performance measures of robot behaviour. Robotics and Autonomous Systems 15, 107–133 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roduit, P., Martinoli, A., Jacot, J. (2006). Behavioral Analysis of Mobile Robot Trajectories Using a Point Distribution Model. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_67

Download citation

  • DOI: https://doi.org/10.1007/11840541_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics