Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Building Ensembles of Neural Networks with Class-Switching

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

This article investigates the properties of ensembles of neural networks, in which each network in the ensemble is constructed using a perturbed version of the training data. The perturbation consists in switching the class labels of a subset of training examples selected at random. Experiments on several UCI and synthetic datasets show that these class-switching ensembles can obtain improvements in classification performance over both individual networks and bagging ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schapire, R.E., Freund, Y., Bartlett, P.L., Lee, W.S.: Boosting the margin: A new explanation for the effectiveness of voting methods. The Annals of Statistics 12(5), 1651–1686 (1998)

    MathSciNet  Google Scholar 

  2. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. 2nd European Conference on Computational Learning Theory, pp. 23–37 (1995)

    Google Scholar 

  3. Quinlan, J.R.: Bagging, boosting, and C4.5. In: Proc. 13th National Conference on Artificial Intelligence, Cambridge, MA, pp. 725–730 (1996)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Breiman, L.: The Annals of Statistics 26(3), 801–849 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  7. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1-2), 105–139 (1999)

    Article  Google Scholar 

  8. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139–157 (2000)

    Article  Google Scholar 

  9. Rätsch, G., Onoda, T., Müller, K.R.: Soft margins for AdaBoost. Machine Learning 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

  10. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  11. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  12. Wolpert, D.H.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

  13. Perrone, M.P., Cooper, L.N.: When networks disagree: Ensemble methods for hybrid neural networks. In: Mammone, R.J. (ed.) Neural Networks for Speech and Image Processing, pp. 126–142. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  14. Sharkey, A.J.C.: Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems. Springer, London (1999)

    MATH  Google Scholar 

  15. Cantador, I., Dorronsoro, J.R.: Balanced boosting with parallel perceptrons. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 208–216. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Valentini, G., Dietterich, T.G.: Bias-variance analysis of support vector machines for the development of svm-based ensemble methods. Journal of Machine Learning Research 5, 725–775 (2004)

    MathSciNet  Google Scholar 

  17. Kong, E.B., Dietterich, T.G.: Error-correcting output coding corrects bias and variance. In: Proceedings of the Twelfth International Conference on Machine Learning, pp. 313–321 (1995)

    Google Scholar 

  18. Ho, T.K.: C4.5 decision forests. In: Proceedings of Fourteenth International Conference on Pattern Recognition, vol. 1, pp. 545–549 (1998)

    Google Scholar 

  19. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. Journal of Artificial Intelligence Research 2, 263–286 (1995)

    MATH  Google Scholar 

  20. Fürnkranz, J.: Round robin classification. Journal of Machine Learning Research 2, 721–747 (2002)

    Article  MATH  Google Scholar 

  21. Breiman, L.: Randomizing outputs to increase prediction accuracy. Machine Learning 40(3), 229–242 (2000)

    Article  MATH  Google Scholar 

  22. Martínez-Muñoz, G., Suárez, A.: Switching class labels to generate classification ensembles. Pattern Recognition 38(10), 1483–1494 (2005)

    Article  Google Scholar 

  23. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  24. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  25. Igel, C., Hüsken, M.: Improving the rprop learning algorithm. In: Proceedings of the Second International Symposium on Neural Computation, pp. 115–121. ICSC Academic Press, London (2000)

    Google Scholar 

  26. Nissen, S.: Implementation of a fast artificial neural network library (fann). Technical report, Department of Computer Science, University of Copenhagen (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez-Muñoz, G., Sánchez-Martínez, A., Hernández-Lobato, D., Suárez, A. (2006). Building Ensembles of Neural Networks with Class-Switching. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_19

Download citation

  • DOI: https://doi.org/10.1007/11840817_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics