Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Time Multiplexing Architecture for Inter-neuron Communications

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

  • 2934 Accesses

Abstract

This paper presents a hardware implementation of a Time Multiplexing Architecture (TMA) that can interconnect arrays of neurons in an Artificial Neural Network (ANN) using a single metal wire. The approach exploits the relative slow operational speed of the biological system by using fast digital hardware to sequentially sample neurons in a layer and transmit the associated spikes to neurons in other layers. The motivation for this work is to develop minimal area inter-neuron communication hardware. An estimate of the density of on-chip neurons afforded by this approach is presented. The paper verifies the operation of the TMA and investigates pulse transmission errors as a function of the sampling rate. Simulations using the Xilinx System Generator (XSG) package demonstrate that the effect of these errors on the performance of an SNN, pre-trained to solve the XOR problem, is negligible if the sampling frequency is sufficiently high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Roche, B., McGinnity, T.M., Maguire, L.P., McDaid, L.J.: Signalling Techniques and their Effect on Neural Network Implementation Sizes. Information Sciences 132, 67–82 (2001)

    Article  MATH  Google Scholar 

  2. Murray, F., Woodburn, R.: The Prospects for Analogue Neural VLSI. International Journal of Neural Systems 8(5,6), 559–579 (1997)

    Article  Google Scholar 

  3. Liu, S.C., Kramer, J., Indiveri, G., Delbruck, T., Burg, T., Douglas, R.: Orientation-selective VLSI Spiking Neurons, Neural Networks. Special Issue on Spiking Neurons in Neuroscience and Technology 14(6-7), 629–643 (2001)

    Google Scholar 

  4. Diorio, C., Hsu, D., Figueroa, M.: Adaptive CMOS: from biological inspiration to systems-on-a-chip. Proceedings of the IEEE 90(3), 345–357 (2002)

    Article  Google Scholar 

  5. Goldberg, D.H., Cauwenberghs, G., Andreou, A.G.: Probabilistic Synaptic Weighting in a Reconfigurable Network of VLSI Integrate-and-Fire Neurons. Neural Networks 14(6–7), 781–793 (2001)

    Article  Google Scholar 

  6. Maass, W.: Computation with Spiking Neurons: the Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1998)

    Google Scholar 

  7. Noory, B., Groza, V.: A Reconfigurable Approach to Hardware Implementation of Neural Networks, IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering 3(4-7), 1861–1864 (2003)

    Google Scholar 

  8. Chun, L., Shi, B., Chen, L.: Hardware Implementation of an Expandable On-chip Learning Neural Network with 8-Neuron and 64-Synapse. In: TENCON 2002. Proceedings 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, October 2002, vol. 3, pp. 28–31 (2002)

    Google Scholar 

  9. Miki, T. (ed.): Brainware: Bio-Inspired Architectures and its Hardware Implementation. World Scientific Publishing Co. Ltd, Singapore (2001)

    Google Scholar 

  10. Johnston, S.P., Prasad, G., Maguire, L.P., McGinnity, T.M.: Comparative Investigation into Classical and Spiking Neuron Implementations on FPGAs. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 269–274. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. http://www.xilinx.com/ise/optional_prod/system_generator.htm

  12. Tu, S.-W., Jou, J.-Y., Chang, Y.-W.: RLC Coupling-Aware Simulation for On-Chip Buses and their Encoding for Delay Reduction. In: 2005 ISCAS IEEE International Symposium on Circuits and Systems, 23-26 May 2005, vol. 4, pp. 4134–4137 (2005)

    Google Scholar 

  13. Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., Fusi, S., Del Giudice, P.: A VLSI Recurrent Network of Integrate and Fire Neurons Connected by Plastic Synapses with Long Term Memory. IEEE Trans. on Neural Networks 14(5) (September 2003)

    Google Scholar 

  14. Yamaoka, M., Osada, K., Ishibashi, K.: 0.4-V Logic-Library-Friendly SRAM Array Using Rectangular-Diffusion Cell and Delta-Boosted-Array Voltage Scheme. IEEE Journal of Solid-State Circuits 39(6), 934–940 (2004)

    Article  Google Scholar 

  15. Naeemi, A., Meindl, J.D.: Monolayer Metallic Nanotube Interconnects: Promising Candidates or Short Local Interconnects. IEEE Electron Device Letters 26(8), 544–546 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tuffy, F. et al. (2006). A Time Multiplexing Architecture for Inter-neuron Communications. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_98

Download citation

  • DOI: https://doi.org/10.1007/11840817_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics