Abstract
This paper presents a hardware implementation of a Time Multiplexing Architecture (TMA) that can interconnect arrays of neurons in an Artificial Neural Network (ANN) using a single metal wire. The approach exploits the relative slow operational speed of the biological system by using fast digital hardware to sequentially sample neurons in a layer and transmit the associated spikes to neurons in other layers. The motivation for this work is to develop minimal area inter-neuron communication hardware. An estimate of the density of on-chip neurons afforded by this approach is presented. The paper verifies the operation of the TMA and investigates pulse transmission errors as a function of the sampling rate. Simulations using the Xilinx System Generator (XSG) package demonstrate that the effect of these errors on the performance of an SNN, pre-trained to solve the XOR problem, is negligible if the sampling frequency is sufficiently high.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Roche, B., McGinnity, T.M., Maguire, L.P., McDaid, L.J.: Signalling Techniques and their Effect on Neural Network Implementation Sizes. Information Sciences 132, 67–82 (2001)
Murray, F., Woodburn, R.: The Prospects for Analogue Neural VLSI. International Journal of Neural Systems 8(5,6), 559–579 (1997)
Liu, S.C., Kramer, J., Indiveri, G., Delbruck, T., Burg, T., Douglas, R.: Orientation-selective VLSI Spiking Neurons, Neural Networks. Special Issue on Spiking Neurons in Neuroscience and Technology 14(6-7), 629–643 (2001)
Diorio, C., Hsu, D., Figueroa, M.: Adaptive CMOS: from biological inspiration to systems-on-a-chip. Proceedings of the IEEE 90(3), 345–357 (2002)
Goldberg, D.H., Cauwenberghs, G., Andreou, A.G.: Probabilistic Synaptic Weighting in a Reconfigurable Network of VLSI Integrate-and-Fire Neurons. Neural Networks 14(6–7), 781–793 (2001)
Maass, W.: Computation with Spiking Neurons: the Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge (1998)
Noory, B., Groza, V.: A Reconfigurable Approach to Hardware Implementation of Neural Networks, IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering 3(4-7), 1861–1864 (2003)
Chun, L., Shi, B., Chen, L.: Hardware Implementation of an Expandable On-chip Learning Neural Network with 8-Neuron and 64-Synapse. In: TENCON 2002. Proceedings 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, October 2002, vol. 3, pp. 28–31 (2002)
Miki, T. (ed.): Brainware: Bio-Inspired Architectures and its Hardware Implementation. World Scientific Publishing Co. Ltd, Singapore (2001)
Johnston, S.P., Prasad, G., Maguire, L.P., McGinnity, T.M.: Comparative Investigation into Classical and Spiking Neuron Implementations on FPGAs. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 269–274. Springer, Heidelberg (2005)
http://www.xilinx.com/ise/optional_prod/system_generator.htm
Tu, S.-W., Jou, J.-Y., Chang, Y.-W.: RLC Coupling-Aware Simulation for On-Chip Buses and their Encoding for Delay Reduction. In: 2005 ISCAS IEEE International Symposium on Circuits and Systems, 23-26 May 2005, vol. 4, pp. 4134–4137 (2005)
Chicca, E., Badoni, D., Dante, V., D’Andreagiovanni, M., Salina, G., Carota, L., Fusi, S., Del Giudice, P.: A VLSI Recurrent Network of Integrate and Fire Neurons Connected by Plastic Synapses with Long Term Memory. IEEE Trans. on Neural Networks 14(5) (September 2003)
Yamaoka, M., Osada, K., Ishibashi, K.: 0.4-V Logic-Library-Friendly SRAM Array Using Rectangular-Diffusion Cell and Delta-Boosted-Array Voltage Scheme. IEEE Journal of Solid-State Circuits 39(6), 934–940 (2004)
Naeemi, A., Meindl, J.D.: Monolayer Metallic Nanotube Interconnects: Promising Candidates or Short Local Interconnects. IEEE Electron Device Letters 26(8), 544–546 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tuffy, F. et al. (2006). A Time Multiplexing Architecture for Inter-neuron Communications. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_98
Download citation
DOI: https://doi.org/10.1007/11840817_98
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38625-4
Online ISBN: 978-3-540-38627-8
eBook Packages: Computer ScienceComputer Science (R0)