Abstract
We give a deterministic polynomial-time algorithm which for any given average degree d and asymptotically almost all random graphs G in \(\mathcal G(n, m= \lfloor\frac{d}{2}n\rfloor)\) outputs a cut of G whose ratio (in cardinality) with the maximum cut is at least 0.952. We remind the reader that it is known that unless P=NP, for no constant ε>0 is there a Max-Cut approximation algorithm that for all inputs achieves an approximation ratio of (16/17) +ε (16/17 < 0.94118).
The authors are partially supported by European Social Fund (ESF), Operational Program for Educational and Vocational Training II (EPEAEK II), and particularly Pythagoras. The second author is partially supported by Future and Emerging Technologies programme of the EU under contract 001907 “Dynamically Evolving, Large-Scale Information Systems (DELIS).”
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barahona, F., Grotschel, M., Junger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Operations Research 36, 493–513 (1988)
Beis, M., Duckworth, W., Zito, M.: Packing edges in random regular graphs. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 118–130. Springer, Heidelberg (2002)
Beis, M., Duckworth, W., Zito, M.: Large k-separated matchings of random regular graphs. In: Estivill-Castro, V. (ed.) ACSC, CRPIT, vol. 38, pp. 175–182. Australian Computer Society (2005)
Bertoni, A., Campadelli, P., Posenato, R.: Un upper bound for the maximum cut mean value. In: Möhring, R.H. (ed.) WG 1997. LNCS, vol. 1335, pp. 78–84. Springer, Heidelberg (1997)
Charikar, M., Makarychev, K., Makarychev, Y.: Near-optimal algorithms for unique games. In: Proceedings of the 38th ACM Symposium on Theory of Computing, Seattle, Washington, USA (2006)
Coja-Oghlan, A., Moore, C., Sanwalani, V.: Max k-cut and approximating the chromatic number of random graphs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 200–211. Springer, Heidelberg (2003)
Coppersmith, D., Gamarnik, D., Hajiaghayi, M.T., Sorkin, G.B.: Random max sat, random max cut, and their phase transitions. Random Struct. Algorithms 24(4), 502–545 (2004)
de la Vega, W.F., Karpinski, M.: 9/8-approximation algorithm for random max-3sat. Electronic Colloquium on Computational Complexity (ECCC) (070) (2002)
Díaz, J., Grammatikopoulos, G., Kaporis, A.C., Kirousis, L.M., Pérez, X., Sotiropoulos, D.G.: 5-regular graphs are 3-colorable with positive probability. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 215–225. Springer, Heidelberg (2005)
Dubois, O., Mandler, J.: On the non-3-colourability of random graphs. ArXiv Mathematics e-prints (September 2002)
Frieze, A.M., McDiarmid, C.: Algorithmic theory of random graphs. Random Struct. Algorithms 10(1–2), 5–42 (1997)
Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM 42, 1115–1145 (1995)
Håstad, J.: Some optimal inapproximability results. Journal of the ACM 48, 798–869 (2001)
Interian, Y.: Approximation algorithm for random MAX-k-SAT. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 173–182. Springer, Heidelberg (2005)
Kalapala, V., Moore, C.: Max-cut on sparse random graphs. TR-CS-2002-24, University of New Mexico Department of Computer Science (2002)
Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: FOCS, pp. 126–135. IEEE Computer Society, Los Alamitos (2004)
Mitzenmacher, M.: Tight thresholds for the pure literal rule. Technical report, Digital Equipment Corporation (1997), available at: www.research.compaq.com/SRC/
Van Ngoc, N., Tuza, Z.: Linear-time algorithms for the max cut problem. Combinatorics, Probability & Computing 2, 201–210 (1993)
Poljak, S., Tuza, Z.: The expected relative error of the polyhedral approximation of the max-cut problem. Operations Research Letters 16, 191–198 (1994)
Trevisan, L., Sorkin, G., Sudan, M., Williamson, D.: Gadgets, approximation, and linear programming. SIAM Journal on Computing 29(6), 2074–2097 (2000)
Wormald, N.C.: Differential equations for random processes and random graphs. The Annals of Applied Probability 5(4), 1217–1235 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaporis, A.C., Kirousis, L.M., Stavropoulos, E.C. (2006). Approximating Almost All Instances of Max-Cut Within a Ratio Above the Håstad Threshold. In: Azar, Y., Erlebach, T. (eds) Algorithms – ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_40
Download citation
DOI: https://doi.org/10.1007/11841036_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)