Abstract
We present algorithmic, complexity and implementation results concerning real root isolation of integer univariate polynomials using the continued fraction expansion of real numbers. We improve the previously known bound by a factor of dĪ, where d is the polynomial degree and Ī bounds the coefficient bitsize, thus matching the current record complexity for real root isolation by exact methods. Namely, the complexity bound is \({{\widetilde{\mathcal{O}}_B}(d^4 \tau^2)}\) using a standard bound on the expected bitsize of the integers in the continued fraction expansion. We show how to compute the multiplicities within the same complexity and extend the algorithm to non square-free polynomials. Finally, we present an efficient open-source C++ implementation in the algebraic library synaps, and illustrate its efficiency as compared to other available software. We use polynomials with coefficient bitsize up to 8000 and degree up to 1000.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akritas, A.: An implementation of Vincentâs theorem. Numerische Mathematik 36, 53â62 (1980)
Akritas, A.: There is no âUspenskyâs methodâ. Extended Abstract. In: Proc. Symp. on Symbolic and Algebraic Computation, Waterloo, Canada, pp. 88â90 (1986)
Akritas, A., Bocharov, A., StrzÊbonski, A.: Implementation of real root isolation algorithms in Mathematica. In: Abstracts of Interval 1994, Russia, pp. 23â27 (1994)
Akritas, A., Strzebonski, A.: A comparative study of two real root isolation methods. Nonlinear Analysis: Modelling and Control 10(4), 297â304 (2005)
Akritas, A.G.: Elements of Computer Algebra with Applications. J. Wiley & Sons, New York (1989)
Bini, D., Fiorentino, G.: Design, analysis, and implementation of a multiprecision polynomial rootfinder. Numerical Algorithms, 127â173 (2000)
Bombieri, E., van der Poorten, A.: Continued fractions of algebraic numbers. In: Computational Algebra and Number Theory, pp. 137â152. Kluwer, Dordrecht (1995)
Brent, R., van der Poorten, A., Riele, H.: A comparative study of algorithms for computing continued fractions of algebraic numbers. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 35â47. Springer, Heidelberg (1996)
Collins, G., Akritas, A.: Polynomial real root isolation using Descartesâ rule of signs. In: SYMSAC 1976, New York, USA, pp. 272â275. ACM Press, New York (1976)
Collins, G.E., Loos, R.: Real zeros of polynomials. In: Buchberger, B., Collins, G.E., Loos, R. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn., pp. 83â94. Springer, Wien (1982)
Davenport, J.H.: Cylindrical algebraic decomposition. Technical Report 88â10, School of Mathematical Sciences, University of Bath, England (1988)
Du, Z., Sharma, V., Yap, C.K.: Amortized bound for root isolation via Sturm sequences. In: Wang, D., Zhi, L. (eds.) Int. Workshop on Symbolic Numeric Computing, School of Science, Beihang University, Beijing, China, pp. 81â93 (2005)
Eigenwillig, A., Sharma, V., Yap, C.: Almost tight complexity bounds for the Descartes method. In: ISSAC 2006 (to appear, 2006)
Emiris, I., Tsigaridas, E.P.: Computations with one and two algebraic numbers. Technical report, ArXiv (December 2005)
Emiris, I.Z., Mourrain, B., Tsigaridas, E.P.: Real Algebraic Numbers: Complexity Analysis and Experimentation. RR 5897, INRIA (April 2006)
Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi diagram of ellipses. In: Proc. 24th Annual ACM SoCG, pp. 227â236 (2006)
Khintchine, A.: Continued Fractions. University of Chicago Press, Chicago (1964)
Kioustelidis, J.: Bounds for the positive roots of polynomials. Journal of Computational and Applied Mathematics 16, 241â244 (1986)
Krandick, W., Mehlhorn, K.: New bounds for the Descartes method. JSCÂ 41(1), 49â66 (2006)
Mignotte, M.: Mathematics for computer algebra. Springer, New York (1991)
Mignotte, M., Stefanescu, D.: Polynomials. Springer, Heidelberg (1999)
Mignotte, M.: On the Distance Between the Roots of a Polynomial. Appl. Algebra Eng. Commun. Comput. 6(6), 327â332 (1995)
Mourrain, B., Pavone, J.P., TrÊbuchet, P., Tsigaridas, E.: SYNAPS, a library for symbolic-numeric computation. In: 8th MEGA, Italy. Software presentation (2005)
Pan, V.: Solving a polynomial equation: Some history and recent progress. SIAM Rev. 39(2), 187â220 (1997)
Richtmyer, R., Devaney, M., Metropolis, N.: Continued fraction expansions of algebraic numbers. Numerische Mathematik 4, 64â68 (1962)
Rosen, D., Shallit, J.: A continued fraction algorithm for approximating all real polynomial roots. Math. Mag. 51, 112â116 (1978)
Rouillier, F., Zimmermann, Z.: Efficient isolation of polynomialâs real roots. J. of Computational and Applied Mathematics 162(1), 33â50 (2004)
Stefanescu, D.: New bounds for the positive roots of polynomials. Journal of Universal Computer Science 11(12), 2132â2141 (2005)
Uspensky, J.V.: Theory of Equations. McGraw-Hill, New York (1948)
van der Poorten, A.: An introduction to continued fractions. In: Diophantine analysis, pp. 99â138. Cambridge University Press, Cambridge (1986)
van der Sluis, A.: Upper bounds for the roots of polynomials. Numerische Mathematik 15, 250â262 (1970)
Vincent, A.J.H.: Sur la rÊsolution des Êquations numÊriques. J. Math. Pures Appl. 1, 341â372 (1836)
von zur Gathen, J., Gerhard, J.: Fast Algorithms for Taylor Shifts and Certain Difference Equations. In: ISSAC, pp. 40â47 (1997)
Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, New York (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Š 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tsigaridas, E.P., Emiris, I.Z. (2006). Univariate Polynomial Real Root Isolation: Continued Fractions Revisited. In: Azar, Y., Erlebach, T. (eds) Algorithms â ESA 2006. ESA 2006. Lecture Notes in Computer Science, vol 4168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11841036_72
Download citation
DOI: https://doi.org/10.1007/11841036_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-38875-3
Online ISBN: 978-3-540-38876-0
eBook Packages: Computer ScienceComputer Science (R0)