Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Applying Modular Decomposition to Parameterized Bicluster Editing

  • Conference paper
Parameterized and Exact Computation (IWPEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4169))

Included in the following conference series:

  • 821 Accesses

Abstract

A graph G is said to be a cluster graph if G is a disjoint union of cliques (complete subgraphs), and a bicluster graph if G is a disjoint union of bicliques (complete bipartite subgraphs). In this work, we study the parameterized version of the NP-hard Bicluster Graph Editing problem, which consists of obtaining a bicluster graph by making the minimum number of modifications in the edge set of an input bipartite graph. When at most k modifications are allowed in the edge set of any input graph (Bicluster( k ) Graph Editing problem), this problem is FPT, solvable in O(4k m) time by applying a search tree algorithm. It is shown an algorithm with O(4k + n + m) time, which uses a new strategy based on modular decomposition techniques. Furthermore, the same techniques lead to a new form of obtaining a problem kernel with O(k 2) vertices for the Cluster( k ) Graph Editing problem, in O(n +m) time. This problem consists of obtaining a cluster graph by modifying at most k edges in an input graph. A previous FPT algorithm for this problem was presented by Gramm et al. [11]. In their solution, a problem kernel with O(k 2) vertices and O(k 3) edges is built in O(n 3) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amit, N.: The Bicluster Graph Editing Problem, M.Sc. Thesis, Tel Aviv University (2004)

    Google Scholar 

  2. Bauer, H., Möhring, R.H.: A fast algorithm for the decomposition of graphs and posets. Mathematics of Operations Research 8, 170–184 (1983)

    Article  MathSciNet  Google Scholar 

  3. Bretscher, A., Corneil, D.G., Habib, M., Paul, C.: A Simple Linear Time LexBFS Cograph Recognition Algorithm. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 119–130. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters 58, 171–176 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahlhaus, E., Gustedt, J., McConnel, R.M.: Efficient and practical algorithms for sequential modular decomposition. Journal of Algorithms 41, 360–387 (2001)

    Article  MATH  Google Scholar 

  6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results. SIAM Journal on Computing 24(4), 873–921 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theoretical Computer Science 141, 109–131 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg

    Google Scholar 

  9. Fernau, H.: Parameterized Algorithms: A Graph-Theoretic Approach, University of Newcastle (2005)

    Google Scholar 

  10. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18, 26–66 (1967)

    Article  MathSciNet  Google Scholar 

  11. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Fixed-parameter algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposition algorithm for graphs, using order extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Möhring, R.H., Radermacher, F.J.: Substitution decomposition and connections with combinatorial optimization. Ann. Discrete Math. 19, 257–356 (1984)

    Google Scholar 

  15. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 5, pp. 536–545 (1994)

    Google Scholar 

  16. McConnell, R.M., Spinrad, J.P.: Ordered vertex partitioning. Discrete Mathematics and Theoretical Computer Science 4, 45–60 (2000)

    MATH  MathSciNet  Google Scholar 

  17. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113, 109–128 (1999)

    Article  MathSciNet  Google Scholar 

  18. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Information Processing Letters 73, 125–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Applied Mathematics 144, 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Protti, F., da Silva, M.D., Szwarcfiter, J.L. (2006). Applying Modular Decomposition to Parameterized Bicluster Editing. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_1

Download citation

  • DOI: https://doi.org/10.1007/11847250_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39098-5

  • Online ISBN: 978-3-540-39101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics