Abstract
Combining classical approximability questions with parameterized complexity, we introduce a theory of parameterized approximability. The main intention of this theory is to deal with the efficient approximation of small cost solutions for optimisation problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM 45(1), 70–122 (1998)
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation. Springer, Heidelberg (2003)
Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: On the parameterized complexity of short computation and factorization. Archive for Mathematical Logic 36, 321–337 (1997)
Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and Approximability Results. These proceedings
Cesati, M., Di Ianni, M.: Computation models for parameterized complexity. Mathematical Logic Quarterly 43, 179–202 (1997)
Chen, J., Chor, B., Fellows, M., Huang, X., Juedes, D., Kanj, I., Xia, G.: Tight lower bounds for certain parameterized NP-hard problems. In: Proceedings of the 19th IEEE Conference on Computational Complexity, pp. 150–160 (2004)
Courcelle, B., Engelfriet, J., Rozenberg, G.: Context-free handle-rewriting hypergraph grammars. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 253–268. Springer, Heidelberg (1991)
Dinur, I.: The PCP theorem by gap amplification. In: Proceedings of STOC 2006. 38th ACM Symposium on Theory of Computing, Seattle, Washington, USA (to appear, 2006)
Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Journal of Theoretical Computer Science 141, 109–131 (1995)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Downey, R.G., Fellows, M.R., McCartin, C.: Parameterized Approximation Algorithms. These proceedings
Even, G., Naor, J.S., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)
Fellows, M., Rosamond, F., Rotics, U., Szeider, S.: Clique-width minimization is NP-hard. In: Proceedings of STOC 2006. 38th ACM Symposium on Theory of Computing, Seattle, Washington, USA (to appear, 2006)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)
Håstad, J.: Clique is hard to approximate within n 1 − ε. Electronic Colloquium on Computational Complexity, Report TR97-038 (1997)
Oum, S.: Approximating rank-width and clique-width quickly. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 49–58. Springer, Heidelberg (2005)
Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B (to appear)
Reed, B., Robertson, N., Seymour, P., Thomas, R.: Packing directed circuits. Combinatorica 16(4), 535–554 (1996)
Seymour, P.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)
Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 482–493. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, Y., Grohe, M., Grüber, M. (2006). On Parameterized Approximability. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_10
Download citation
DOI: https://doi.org/10.1007/11847250_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39098-5
Online ISBN: 978-3-540-39101-2
eBook Packages: Computer ScienceComputer Science (R0)