Abstract
We analyze edge dominating set from a parameterized perspective. More specifically, we prove that this problem is in \({\mathcal{FPT}}\) for general (weighted) graphs. The corresponding algorithms rely on enumeration techniques. In particular, we show how the use of compact representations may speed up the decision algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM Journal of Discrete Mathematics 12, 289–297 (1999)
Berger, A., Parekh, O.: Linear time algorithms for generalized edge dominating set problems. Technical Report TR-2005-002-A, Emory University Math/CS department (2005)
Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A \(2\ 1/10\) approximation algorithm for a generalization of the weighted edge-dominating set problem. Journal of Combinatorial Optimization 5, 317–326 (2001)
Damaschke, P.: Parameterized enumeration, transversals, and imperfect phylogeny reconstruction. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 1–12. Springer, Heidelberg (2004)
Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An o(2O(k) n 3 ) fpt algorithm for the undirected feedback vertex set problem. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidelberg (2005)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)
Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45, 634–652 (1998)
Fellows, M.R., McCartin, C., Rosamond, F.A., Stege, U.: Coordinatized kernels and catalytic reductions: An improved FPT algorithm for max leaf spanning tree and other problems. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 240–251. Springer, Heidelberg (2000)
Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 564–573. Springer, Heidelberg (2002)
Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: Complexity and algorithms. Technical Report TR-2006-210, Department of Computing Science DCS Glasgow, UK (April 2006), Available through: http://www.dcs.gla.ac.uk/publications/paperdetails.cfm?id=8137
Fernau, H., Niedermeier, R.: An efficient exact algorithm for constraint bipartite vertex cover. Journal of Algorithms 38(2), 374–410 (2001)
Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)
Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics 118, 199–207 (2002)
Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Improved fixed-parameter algorithms for two feedback set problems. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 158–168. Springer, Heidelberg (2005)
Horton, J.D., Kilakos, K.: Minimum edge dominating sets. SIAM Journal of Discrete Mathematics 6, 375–387 (1993)
Lu, C.L., Ko, M.-T., Tang, C.Y.: Perfect edge domination and efficient edge domination in graphs. Discrete Applied Mathematics 119(3), 227–250 (2002)
Manlove, D.F.: Minimaximal and maximinimal optimisation problems: a partial order-based approach. PhD thesis, University of Glasgow, Computing Science (1998)
Parekh, O.: Edge domination and hypomatchable sets. In: Symposium on Discrete Algorithms SODA 2002, pp. 287–291. ACM Press, New York (2002)
Plesník, J.: Equivalence between the minimum covering problem and the maximum matching problem. Discrete Mathematics 49, 315–317 (1984)
Plesník, J.: Constrained weighted matchings and edge coverings in graphs. Discrete Applied Mathematics 92, 229–241 (1999)
Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, The University of Newcastle, Australia (2005)
Weston, M.: A fixed-parameter tractable algorithm for matrix domination. Information Processing Letters 90, 267–272 (2004)
Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal of Applied Mathematics 38(3), 364–372 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fernau, H. (2006). edge dominating set: Efficient Enumeration-Based Exact Algorithms. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_13
Download citation
DOI: https://doi.org/10.1007/11847250_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39098-5
Online ISBN: 978-3-540-39101-2
eBook Packages: Computer ScienceComputer Science (R0)