Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational Efficiency and Practical Implications for a Client Grid

  • Conference paper
High Performance Computing and Communications (HPCC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4208))

  • 802 Accesses

Abstract

Client grid computing models based on participation of non-dedicated clients have been popular for computationally intensive tasks. Two fundamental requirements of these models are efficiency and accuracy. Common implementations use 1) checkpointing mechanisms for higher efficiency and 2) redundancy to achieve accurate results. In this paper, we formulate client grid computation using stochastic models and analyze the effects of checkpointing and redundancy in relation to performance. We first quantify the computation times required for a task with and without checkpointing, then the relationship between result accuracy and redundancy. Finally, we give a sensitivity analysis for parameters relating to client availability, checkpointing, and redundancy to provide guidelines on design and implementation of client grid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: Seti@home: An experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002)

    Article  Google Scholar 

  2. Berkeley Open Infrastructure for Network Computing (BOINC), http://boinc.ssl.berkeley.edu/

  3. SETI@home, http://setiathome.ssl.berkeley.edu/

  4. World Community Grid, http://www.worldcommunitygrid.org/

  5. United Devices, http://www.ud.com/

  6. Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Proceedings of the 8th International Conference of Distributed Computing Systems (1988)

    Google Scholar 

  7. Foster, I., Kesselman, C.: The globus toolkit, pp. 259–278 (1999)

    Google Scholar 

  8. Foster, I., Kesselman, C., Lee, C., Lindell, R., Nahrstedt, K., Roy, A.: A distributed resource management architecture that supports advance reservations and co-allocation. In: Proceedings of the International Workshop on Quality of Service (1999)

    Google Scholar 

  9. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing. PhD thesis, Monash University, Melbourne, Australia (2002)

    Google Scholar 

  10. Clearwater, S.H. (ed.): Market-based control: a paradigm for distributed resource allocation. World Scientific Publishing Co., Inc., River Edge (1996)

    Google Scholar 

  11. Wolski, R., Plank, J.S., Brevik, J., Bryan, T.: Analyzing market-based resource allocation strategies for the computational grid. International Journal of High Performance Computing Applications 15(3), 258–281 (2001)

    Article  Google Scholar 

  12. Wolski, R., Brevik, J., Plank, J.S., Bryan, T.: Grid resource allocation and control using computational economies. In: Berman, F., Fox, G., Hey, A. (eds.) Grid Computing: Making The Global Infrastructure a Reality. John Wiley & Sons, Chichester (2003)

    Google Scholar 

  13. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of distributed systems. ACM Trans. Comput. Syst. 3(1), 63–75 (1985)

    Article  Google Scholar 

  14. Pruyne, J., Livny, M.: Managing checkpoints for parallel programs. In: Workshop on Job Scheduling Strategies for Parallel Processing (IPPS 1996), Honolulu, HI (1996)

    Google Scholar 

  15. Taufer, M., Anderson, D., Cicotti, P., Brooks III, C.L.: Homogeneous redundancy: a technique to ensure integrity of molecular simulation results using public computing. In: IPDPS (2005)

    Google Scholar 

  16. Germain-Renaud, C., Playez, N.: Result checking in global computing systems. In: ICS 2003: Proceedings of the 17th Annual International Conference on Supercomputing, pp. 226–233. ACM Press, New York (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, N., Alimi, R. (2006). Computational Efficiency and Practical Implications for a Client Grid. In: Gerndt, M., Kranzlmüller, D. (eds) High Performance Computing and Communications. HPCC 2006. Lecture Notes in Computer Science, vol 4208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847366_80

Download citation

  • DOI: https://doi.org/10.1007/11847366_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39368-9

  • Online ISBN: 978-3-540-39372-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics