Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Kernel Fisher LPP for Face Recognition

  • Conference paper
Multimedia Content Representation, Classification and Security (MRCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4105))

  • 1487 Accesses

Abstract

Subspace analysis is an effective approach for face recognition. Locality Preserving Projections (LPP) finds an embedding subspace that preserves local structure information, and obtains a subspace that best detects the essential manifold structure. Though LPP has been applied in many fields, it has limitations to solve recognition problem. In this paper, a novel subspace method, called Kernel Fisher Locality Preserving Projections (KFLPP), is proposed for face recognition. In our method, discriminant information with intrinsic geometric relations is preserved in subspace in term of Fisher criterion. Furthermore, complex nonlinear variations of face images, such as illumination, expression, and pose, are represented by nonlinear kernel mapping. Experi-mental results on ORL and Yale database show that the proposed method can improve face recognition performance.

This work was supported by NSF of China (60472060, 60473039, 60503026 and 60572034).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhao, W., Chellappa, R., Rosenfeld, A., Phillips, P.J.: Face recognition: A literature survey, Technical Report CAR-TR-948, University of Maryland, College Park (2000)

    Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  3. Belhumeur, P.N., Hespanha, J.P., Kriengman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)

    Article  Google Scholar 

  4. Tenenbaum, J., de Dilva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  5. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  6. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Proceedings of Advances in Neural Information Processing System, Vancouver, Canada, vol. 14 (December 2001)

    Google Scholar 

  7. He, X., Yan, S., Hu, Y., Zhang, H.: Learning a locality preserving subspace for visual recognition. In: Proceedings of Ninth International Conference on Computer Vision, France, pp. 385–392 (October 2003)

    Google Scholar 

  8. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.: Face Recognition Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)

    Article  Google Scholar 

  9. Yu, W., Teng, X., Liu, C.: Face recognition using discriminant locality preserving projections. Image and vision computing 24, 239–248 (2006)

    Article  Google Scholar 

  10. Cheng, J., Shan, Q., Lu, H., Chen, Y.: Supervised kernel locality preserving projections for face recognition. Neurocomputing 67, 443–449 (2005)

    Article  Google Scholar 

  11. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  12. Yang, J., Frangi, A.F., Yang, J.Y., Zhang, D., Jin, Z.: KPCA plus LDA: A Complete Kernel Fisher Discriminant Framework for Feature extraction and Recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 27(2), 230–244 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Yj., Yang, Jy., Yang, J., Wu, Xj., Wang, Wd. (2006). Kernel Fisher LPP for Face Recognition. In: Gunsel, B., Jain, A.K., Tekalp, A.M., Sankur, B. (eds) Multimedia Content Representation, Classification and Security. MRCS 2006. Lecture Notes in Computer Science, vol 4105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11848035_20

Download citation

  • DOI: https://doi.org/10.1007/11848035_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-39392-4

  • Online ISBN: 978-3-540-39393-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics