Abstract
Recognition of everyday physical activities is difficult due to the challenges of building informative, yet unobtrusive sensors. The most widely deployed and used mobile computing device today is the mobile phone, which presents an obvious candidate for recognizing activities. This paper explores how coarse-grained GSM data from mobile phones can be used to recognize high-level properties of user mobility, and daily step count. We demonstrate that even without knowledge of observed cell tower locations, we can recognize mobility modes that are useful for several application domains. Our mobility detection system was evaluated with GSM traces from the everyday lives of three data collectors over a period of one month, yielding an overall average accuracy of 85%, and a daily step count number that reasonably approximates the numbers determined by several commercial pedometers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
GSM Association Press Release, Worldwide cellular connections exceeds 2 billion (2005), http://www.gsmworld.com/news/press_/press05_21.shtml
Wireless Week, Newer Phones, Older Users, http://www.wirelessweek.com/article/CA503601.html
Abowd, G.A., Bobick, I., Essa, E.: Mynatt, and W. Rogers. The Aware Home: Developing Technologies for Successful Aging. In: Proceedings of AAAI Workshop and Automation as a Care Giver
Anderson, I., Muller, H.: Context Awareness via GSM Signal Strength Fluctuation. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 27–31. Springer, Heidelberg (2006)
Bahl, P., Padmanabhan, V.: RADAR: An-In-Building RF-Based User Location and Tracking. In: Proceedings of IEEE Infocom 2000, pp. 775–784 (2000)
Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)
Consolvo, S., Roessler, P., Shelton, B.E., LaMarca, A., Schilit, B., Bly, S.: Technology for Care Networks of Elders. IEEE Pervasive Computing Mobile & Ubiquitous Systems: Successful Aging 3(2), 22–29 (2004)
Consolvo, S., Roessler, P., Shelton, B.E.: The careNet display: Lessons learned from an in home evaluation of an ambient display. In: Davies, N., Mynatt, E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205, pp. 1–17. Springer, Heidelberg (2004)
Consumer Reports, Pedometers: Walking by the numbers, Consumer Reports 69(10), 2–30 (2004)
Dodgeball, http://www.dodgeball.com/
Eagle, N., Pentland, A.: Reality Mining: Sensing Complex Social Systems. Personal and Ubiquitous Computing (January 2006)
Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of International Conference on Machine Learning, pp. 148–156 (1996)
Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting. Annals of Statistics, 337–374 (2000)
Hariharan, R., Krumm, J., Horvitz, E.: Web-enhanced GPS. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 95–104. Springer, Heidelberg (2005)
Intille, S.S., Larson, K., Beaudin, J.S., Nawyn, J., Tapia, E.M., Kaushik, P.: A living laboratory for the design and evaluation of ubiquitous computing technologies. In: CHI 2005 Extended Abstracts, pp. 1941–1944 (2005)
Ito, Mizuko, et al. (eds.): Personal, Portable, Pedestrian. Mobile Phones in Japanese Life. The MIT Press, Cambridge (2005)
Krumm, J., Horvitz, E.: LOCADIO: Inferring Motion and Location from Wi-Fi Signal Strengths. In: Mobiquitous 2004, pp. 4–13 (2004)
LaMarca, A., Chawathe, Y., Consolvo, S., Hightower, J., Smith, I., Scott, J., Sohn, T., Howard, J., Hughes, J., Potter, F., Tabert, J., Powledge, P.S., Borriello, G., Schilit, B.N.: Place lab: Device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005)
Lester, J., Choudhury, T., Kern, N., Borriello, G., Hannaford, B.: A Hybrid Discriminative-Generative Approach for Modeling Human Activities. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI 2005) (2005)
Liao, L., Fox, D., Kautz, H.: Location-Based Activity Recognition using Relational Markov Networks. In: Proceedings of the International Conference on Artificial Intelligence (IJCAI 2005) (2005)
Mynatt, E.D., Rowan, J., Craighill, S.: Jacobs. Digital family portraits: supporting peace of mind for extended family members. In: Proceedings of the CHI 2001, pp. 333–340 (2001)
Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S.S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005)
Patterson, D.J., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: Dey, A.K., Schmidt, A., McCarthy, J.F. (eds.) UbiComp 2003. LNCS, vol. 2864, pp. 73–89. Springer, Heidelberg (2003)
Pavlovic, V., Garg, A., Rehg, J.M.: Multimodal speaker detection using error feedback dynamic bayesian networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2000)
Philipose, M., Fishkin, K., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hähnel, D.: Inferring Activities from Interactions with Objects. In: IEEE Pervasive Computing (October 2004)
Schapire, R.E.: The boosting approach to machine learning: An overview. In: Denison, D.D., Hansen, M.H., Holmes, C., Mallick, B., Yu, B. (eds.) Nonlinear Estimation and Classification. Springer, Heidelberg (2003)
Schwenk, H., Bengio, Y.: Training methods for adaptive boosting of neural networks for character recognition. In: Proceedings of NIPS 1998 (1998)
Smith, I.: Social-Mobile Applications. IEEE Computer 38(4), 84–85 (2005)
Smith, I., Consolvo, S., LaMarca, A., Hightower, J., Scott, J., Sohn, T., Hughes, J., Iachello, G., Abowd, G.D.: Social disclosure of place: From location technology to communication practices. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) PERVASIVE 2005. LNCS, vol. 3468, pp. 134–151. Springer, Heidelberg (2005)
Socialight, http://socialight.com
Textamerica, http://www.textamerica.com/
Tudor-Locke, C., Bassett Jr., D.R.: How many steps/day are enough? Preliminary pedometer indices for public health. Sports Med. 34(1), 1–8 (2004)
Viola, P.A., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)
Ward, A., Jones, A., Hopper, A.: A new location technique for the active office. In: Personal Communications (October 1997)
Webb, G.I.: MultiBoosting: A Technique for Combining Boosting and Wagging. Machine Learning 40(2), 159–196 (2000)
Weisstein, E.W.: Spearman Rank Correlation Coefficient, http://mathworld.wolfram.com/SpearmanRankCorrelationCoefficient.html
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sohn, T. et al. (2006). Mobility Detection Using Everyday GSM Traces. In: Dourish, P., Friday, A. (eds) UbiComp 2006: Ubiquitous Computing. UbiComp 2006. Lecture Notes in Computer Science, vol 4206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11853565_13
Download citation
DOI: https://doi.org/10.1007/11853565_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39634-5
Online ISBN: 978-3-540-39635-2
eBook Packages: Computer ScienceComputer Science (R0)