Abstract
A method for exploiting the information in low-level image segmentations for the purpose of object recognition is presented. The key idea is to use a whole ensemble of segmentations per image, computed on different random samples of image sites. Along the boundaries of those segmentations that are stable under the sampling process we extract strings of vectors that contain local image descriptors like shape, texture and intensities. Pairs of such strings are aligned, and based on the alignment scores a mixture model is trained which divides the segments in an image into fore- and background. Given such candidate foreground segments, we show that it is possible to build a state-of-the-art object recognition system that exhibits excellent performance on a standard benchmark database. This result shows that despite the inherent problems of low-level image segmentation in poor data conditions, segmentation can indeed be a valuable tool for object recognition in real-world images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Machine Intell. 26(11) (2004)
Leibe, B., Schiele, B.: Scale-invariant object categorization using a scale-adaptive mean-shift search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)
Ommer, B., Buhmann, J.M.: Object Categorization by Compositional Graphical Models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 235–250. Springer, Heidelberg (2005)
Ommer, B., Buhmann, J.M.: Learning Compositional Categorization Models. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 316–329. Springer, Heidelberg (2006)
Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: CVPR 2005, pp. 26–33 (2005)
Yu, S.X., Gross, R., Shi, J.: Concurrent object recognition and segmentation by graph partitioning. In: NIPS, pp. 1383–1390. MIT Press, Cambridge (2002)
Geman, S., Potter, D.F., Chi, Z.: Composition Systems. Technical report, Division of Applied Mathematics, Brown University, Providence, RI (1998)
Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: CVPR Workshop GMBV (2004)
Roth, V., Lange, T.: Adaptive Feature Selection in Image Segmentation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 9–17. Springer, Heidelberg (2004)
Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Computation 16(6), 1299–1323 (2004)
Belongie, S., Malik, J., Puzicha, J.: Matching shapes. In: ICCV 2001, pp. 454–463 (2001)
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)
Roth, V., Steinhage, V.: Nonlinear discriminant analysis using kernel functions. In: Solla, S., Leen, T., Müller, K.R. (eds.) NIPS 12, pp. 568–574. MIT Press, Cambridge (1999)
Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)
Roth, V., Tsuda, K.: Pairwise coupling for machine recognition of hand-printed japanese characters. In: CVPR, pp. 1120–1125 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Roth, V., Ommer, B. (2006). Exploiting Low-Level Image Segmentation for Object Recognition. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_2
Download citation
DOI: https://doi.org/10.1007/11861898_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44412-1
Online ISBN: 978-3-540-44414-5
eBook Packages: Computer ScienceComputer Science (R0)