Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Exploiting Low-Level Image Segmentation for Object Recognition

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

A method for exploiting the information in low-level image segmentations for the purpose of object recognition is presented. The key idea is to use a whole ensemble of segmentations per image, computed on different random samples of image sites. Along the boundaries of those segmentations that are stable under the sampling process we extract strings of vectors that contain local image descriptors like shape, texture and intensities. Pairs of such strings are aligned, and based on the alignment scores a mixture model is trained which divides the segments in an image into fore- and background. Given such candidate foreground segments, we show that it is possible to build a state-of-the-art object recognition system that exhibits excellent performance on a standard benchmark database. This result shows that despite the inherent problems of low-level image segmentation in poor data conditions, segmentation can indeed be a valuable tool for object recognition in real-world images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Machine Intell. 26(11) (2004)

    Google Scholar 

  2. Leibe, B., Schiele, B.: Scale-invariant object categorization using a scale-adaptive mean-shift search. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 145–153. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Ommer, B., Buhmann, J.M.: Object Categorization by Compositional Graphical Models. In: Rangarajan, A., Vemuri, B.C., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 235–250. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Ommer, B., Buhmann, J.M.: Learning Compositional Categorization Models. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 316–329. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Berg, A.C., Berg, T.L., Malik, J.: Shape matching and object recognition using low distortion correspondence. In: CVPR 2005, pp. 26–33 (2005)

    Google Scholar 

  6. Yu, S.X., Gross, R., Shi, J.: Concurrent object recognition and segmentation by graph partitioning. In: NIPS, pp. 1383–1390. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Geman, S., Potter, D.F., Chi, Z.: Composition Systems. Technical report, Division of Applied Mathematics, Brown University, Providence, RI (1998)

    Google Scholar 

  8. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In: CVPR Workshop GMBV (2004)

    Google Scholar 

  9. Roth, V., Lange, T.: Adaptive Feature Selection in Image Segmentation. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 9–17. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Computation 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

  11. Belongie, S., Malik, J., Puzicha, J.: Matching shapes. In: ICCV 2001, pp. 454–463 (2001)

    Google Scholar 

  12. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology 147, 195–197 (1981)

    Article  Google Scholar 

  13. Roth, V., Steinhage, V.: Nonlinear discriminant analysis using kernel functions. In: Solla, S., Leen, T., Müller, K.R. (eds.) NIPS 12, pp. 568–574. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  15. Roth, V., Tsuda, K.: Pairwise coupling for machine recognition of hand-printed japanese characters. In: CVPR, pp. 1120–1125 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roth, V., Ommer, B. (2006). Exploiting Low-Level Image Segmentation for Object Recognition. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_2

Download citation

  • DOI: https://doi.org/10.1007/11861898_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics