Abstract
2D-3D registration for angiographic liver interventions is an unsolved problem mainly because of two reasons. First, a suitable protocol for Computed Tomography Angiography (CTA) to contrast liver arteries is not used in clinical practice. Second, an adequate registration algorithm which addresses the difficult task of aligning deformed vessel structures has not been developed yet. We address the first issue by introducing an angiographic CT scanning phase and thus create a strong link between radiologists and interventionalists. The scan visualizes arteries similar to the vasculature captured with an intraoperative C-arm acquiring Digitally Subtracted Angiograms (DSAs). Furthermore, we propose a registration algorithm using the new CT phase that aligns arterial structures in two steps: a) Initialization of one corresponding feature using vessel diameter information, b) optimization on three rotational and one translational parameter to register vessel structures that are represented as centerline graphs. We form a space of good features by iteratively creating new graphs from projected centerline images and by restricting the correspondence search only on branching points (the vertices) of the vessel tree. This algorithm shows good convergence and proves to be robust against deformation changes, which is demonstrated through studies on one phantom and three patients.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Kerrien, E., Berger, M.O., Maurincomme, E., Launay, L., Vaillant, R., Picard, L.: Fully automatic 3D/2D subtracted angiography registration. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 664–671. Springer, Heidelberg (1999)
Turgeon, G.-A., Lehmann, G., Guiraudon, G., Drangova, M., Holdsworth, D., Peters, T.: 2D-3D registration of coronary angiograms for cardiac procedure planning and guidance. Med. Phys. 32, 3737–3749 (2005)
Kita, Y., Wilson, D., Noble, J.A.: Real-time registration of 3D cerebral vessels to X-ray angiograms. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1125–1133. Springer, Heidelberg (1998)
Alperin, N., Levin, D.N., Pelizzari, C.A.: Retrospective registration of x-ray angiograms with mr images by using vessels as intrinsic landmarks. Journal of Magnetic Resonance Imaging 4, 139–144 (1994)
Feldmar, J., Ayache, N., Betting, F.: 3D-2D projective registration of free-form curves and surfaces. In: Proc. Int’l. Conf. of Computer Vision (ICCV), pp. 549–556 (1995)
Liu, A., Bullitt, E., Pizer, S.: 3D/2D registration via skeletal near projective invariance in tubular objects. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 952–963. Springer, Heidelberg (1998)
Chan, H., Chung, A., Yu, S., Wells, W.: 2D-3D vascular registration between digital subtraction angiographic (dsa) and magnetic resonance angiographic (mra) images. In: Proc. of the IEEE International Symposium on Biomedical Imaging. LNCS, vol. 1205, pp. 708–711. IEEE, Los Alamitos (2004)
Florin, C., Williams, J., Khamene, A., Paragios, N.: Registration of 3D angiographic and x-ray images using sequential monte carlo sampling. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 427–436. Springer, Heidelberg (2005)
Hipwell, J., Penney, G., McLaughlin, R., Rhode, K., Summers, P., Cox, T., Byrne, J., Noble, J., Hawkes, D.: Intensity based 2D-3D registration of cerebral angiograms. IEEE Trans. on Medical Imaging (TMI) 22, 1417–1426 (2003)
Vermandel, M., Betrouni, N., Palos, G., Gauvrit, J.-Y., Vasseur, C., Rousseau, J.: Registration, matching, and data fusion in 2D/3D medical imaging: Application to DSA and MRA. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 778–785. Springer, Heidelberg (2003)
Zahlten, C., Jürgens, H., Peitgen, H.O.: Reconstruction of branching blood vessels from ct-data. In: Eurographics Workshop of Visualization in Scientific Computing, pp. 161–168. Springer, Heidelberg (1994)
Charnoz, A., Agnus, V., Malandain, G., Forest, C., Tajine, M., Soler, L.: Liver registration for the follow-up of hepatic tumors. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 155–162. Springer, Heidelberg (2005)
Aylward, S., Jomier, J.: Rigid and deformable vasculature-to-image registration: A hierarchical approach. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3216, pp. 829–836. Springer, Heidelberg (2004)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Palágyi, K., Sorantin, E., Balogh, E., Kuba, A., Halmai, C., Erdöhelyi, B., Hausegger, K.: A sequential 3D thinning algorithm and its medical applications. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 409–415. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Groher, M., Padoy, N., Jakobs, T.F., Navab, N. (2006). New CTA Protocol and 2D-3D Registration Method for Liver Catheterization. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, vol 4190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11866565_107
Download citation
DOI: https://doi.org/10.1007/11866565_107
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44707-8
Online ISBN: 978-3-540-44708-5
eBook Packages: Computer ScienceComputer Science (R0)