Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clustering of Online Game Users Based on Their Trails Using Self-organizing Map

  • Conference paper
Entertainment Computing - ICEC 2006 (ICEC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4161))

Included in the following conference series:

Abstract

To keep an online game interesting to its users, it is important to know them. In this paper, in order to characterize user characteristics, we discuss clustering of online-game users based on their trails using Self Organization Map (SOM). As inputs to SOM, we introduce transition probabilities between landmarks in the targeted game map. An experiment is conducted confirming the effectiveness of the presented technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Börner, K., Penumarthy, S.: Social Diffusion Patterns in Three-Dimensional Virtual Worlds. Information Visualization Journal 2(3), 182–198 (2003)

    Article  Google Scholar 

  2. Kohonen, T.: Self-Organizing Maps, 2nd Extended edn. Springer Series in Information Sciences, vol. 30. Springer, New York (1997)

    Book  MATH  Google Scholar 

  3. Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neural Computing Surveys 3, 1–156 (2003)

    Google Scholar 

  4. Sadeghian, P., Kantardzic, M., Lozitskiy, O., Sheta, W.: Route Recommendations in Complex Virtual Environments: The Sequence Mining Approach. The International Journal of Human-Computer Studies (to appear)

    Google Scholar 

  5. SOM_PAK (2004), http://www.cis.hut.fi/research/som_lvq_pak.shtml

  6. Chittaro, L., Ieronutti, L.: A Visual Tool for Tracing Behaviors of Users in Virtual Environments. In: Proc. of the 7th Internatioon Advanced Visual Interfaces Conference, pp. 40–47. ACM Press, New York (2004)

    Google Scholar 

  7. Thawonmas, R., Hata, K.: Aggregation of Action Symbol Sub-sequences for Discovery of Online-Game Player Characteristics Using KeyGraph. In: Kishino, F., Kitamura, Y., Kato, H., Nagata, N. (eds.) ICEC 2005. LNCS, vol. 3711, pp. 126–135. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 IFIP International Federation for Information Processing

About this paper

Cite this paper

Thawonmas, R., Kurashige, M., Iizuka, K., Kantardzic, M. (2006). Clustering of Online Game Users Based on Their Trails Using Self-organizing Map. In: Harper, R., Rauterberg, M., Combetto, M. (eds) Entertainment Computing - ICEC 2006. ICEC 2006. Lecture Notes in Computer Science, vol 4161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11872320_51

Download citation

  • DOI: https://doi.org/10.1007/11872320_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45259-1

  • Online ISBN: 978-3-540-45261-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics