Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incremental Learning of Context Free Grammars by Bridging Rule Generation and Search for Semi-optimum Rule Sets

  • Conference paper
Grammatical Inference: Algorithms and Applications (ICGI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4201))

Included in the following conference series:

Abstract

This paper describes novel methods of learning general context free grammars from sample strings, which are implemented in Synapse system. Main features of the system are incremental learning, rule generation based on bottom-up parsing of positive samples, and search for rule sets. From the results of parsing, a rule generation process, called “bridging,” synthesizes the production rules that make up any lacking parts of an incomplete derivation tree for each positive string. To solve the fundamental problem of complexity for learning CFG, we employ methods of searching for non-minimum, semi-optimum sets of rules as well as incremental learning based on related grammars. One of the methods is search strategy called “serial search,” which finds additional rules for each positive sample and not to find the minimum rule set for all positive samples as in global search. The other methods are not to minimize nonterminal symbols in rule generation and to restrict the form of generated rules. The paper shows experimental results and compares various synthesis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angluin, D., Kharitonov, M.: When and Won’t Membership Queries Help? Jour. Computers and System Sciences 50, 336–355 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bratko, I.: PROLOG Programming for Artificial Intelligence, 3rd edn. Addison Wesley, Reading (2000)

    Google Scholar 

  3. de la Higuera, C., Oncina, J.: Inferring Deterministic Linear Langauges. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 185–200. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Hopcroft, J.E., Ullman, J.E.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)

    MATH  Google Scholar 

  5. Langley, P., Stromsten, S.: Learning Context-Free Grammars with a Simplicity Bias. In: Lopez de Mantaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 220–228. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Nakamura, K., Ishiwata, Y.: Synthesizing context free grammars from sample strings based on inductive CYK algorithm. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 186–195. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Nakamura, K.: Incremental Learning of Context Free Grammars by Extended Inductive CYK Algorithm. In: Workshop on Learning Context Free Grammars (2003)

    Google Scholar 

  8. Nakamura, K., Matsumoto, M.: Incremental Learning of Context Free Grammars Based on Bottom-up Parsing and Search. Pattern Recognition 38, 1384–1392 (2005)

    Article  MATH  Google Scholar 

  9. Nakamura, K., Hoshina, A.: Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search (in Japanese). Trans. of JSAI 21, 371–379 (2006)

    Google Scholar 

  10. Nienhuys-Cheng, S.H., de Wolf, R.: Foundations of Inductive Logic Programming. Springer, Heidelberg (1997)

    Google Scholar 

  11. Pitt, L., Warmuth, M.: The Minimum Consistent DFA Problem Cannot be Approximated within any Polynomial. Jour. of ACM 40, 95–142 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sakakibara, Y.: Learning context-free grammars from positive structured examples. Information and Computation 97, 23–60 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer Science 185, 15–45 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sakakibara, Y., Muramatsu, H.: Learning context-free grammars from partially structured examples. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 229–240. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Tanaka, T.: Definite clause set grammars: A formalism for problem solving. J. Logic Programming 10(1), 1–17 (1991)

    Article  MathSciNet  Google Scholar 

  16. Vervoort, M.: Emile 4.4.6 User Guide, Universiteit van Amsterdam (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakamura, K. (2006). Incremental Learning of Context Free Grammars by Bridging Rule Generation and Search for Semi-optimum Rule Sets. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds) Grammatical Inference: Algorithms and Applications. ICGI 2006. Lecture Notes in Computer Science(), vol 4201. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11872436_7

Download citation

  • DOI: https://doi.org/10.1007/11872436_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45264-5

  • Online ISBN: 978-3-540-45265-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics