Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Clustering by Integrating Multi-objective Optimization with Weighted K-Means and Validity Analysis

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2006 (IDEAL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4224))

Abstract

This paper presents a clustering approach that integrates multi-objective optimization, weighted k-means and validity analysis in an iterative process to automatically estimate the number of clusters, and then partition the whole given data to produce the most natural clustering. The proposed approach has been tested on real-life dataset; results of both weighted and unweighed k-means are reported to demonstrate applicability and effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hartigan, J.: Clustering algorithms. John Wiley and Sons, New York (1975)

    MATH  Google Scholar 

  2. Desarbo, W., Carroll, J., Clark, L., Green, P.: Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables. Psychometrika 49, 57–78 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Modha, D., Spangler, W.: Feature weighting in k-means clustering. Machine Learning 52(3) (2003)

    Google Scholar 

  4. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE. PAMI 27(5), 657–668 (2005)

    Google Scholar 

  5. Friedman, J., Meulman, J.: Clustering objects on subsets of attributes. J. Royal Stat. Soc. B (2002)

    Google Scholar 

  6. Liu, Y., Özyer, T., Alhajj, R., Barker, K.: Integrating multi-objective genetic algorithm and validity analysis for locating and ranking alternative clustering. European Journal of Informatica 29(1), 33–40 (2005)

    MATH  Google Scholar 

  7. Liu, Y., Özyer, T., Alhajj, R., Barker, K.: Cluster validity analysis of alternative solutions from multi-objective optimization. In: Proc. of SIAM DM (2005)

    Google Scholar 

  8. Özyer, T., Alhajj, R.: Achieving natural clustering by validating results of iterative evolutionary clustering approach. In: Proceedings of IEEE International Conference on Intelligent Systems (2006)

    Google Scholar 

  9. Fridyland, J., Dudoit, S.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3(7) (2002)

    Google Scholar 

  10. Fowlkes, E., Mallows, C.: A method for comparing two hierarchical clusterings. Journal of American Statistical Association (78), 553–569 (1983)

    Google Scholar 

  11. Wall, M.: GAlib Documentation. Massachusetts Institute of Technology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Özyer, T., Alhajj, R., Barker, K. (2006). Clustering by Integrating Multi-objective Optimization with Weighted K-Means and Validity Analysis. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2006. IDEAL 2006. Lecture Notes in Computer Science, vol 4224. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875581_55

Download citation

  • DOI: https://doi.org/10.1007/11875581_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45485-4

  • Online ISBN: 978-3-540-45487-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics