Abstract
This paper introduces a kernel selection method to automatically choose the best kernel type for a query by using the score distributions of the relevant and non-relevant images given by user as feedback. When applied to our data, the method selects the same best kernel (out of the 12 tried kernels) for a particular query as the kernel obtained from our extensive experimental results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Doloc-Mihu, A., Raghavan, V.V., Bollmann-Sdorra, P.: Color Retrieval in Vector Space Model. In: Proceedings of the 26th International ACM SIGIR Workshop on Mathematical/Formal Methods in Information Retrieval, MF/IR (2003)
Raghavan, V.V., Wong, S.K.M.: A Critical Analysis of Vector Space Model for Information Retrieval. Journal of the American Society for Information Science 37, 279–287 (1986)
Bollmann-Sdorra, P., Jochum, F., Reiner, U., Weissmann, V., Zuse, H.: The LIVE Project - Retrieval Experiments Based on Evaluation Viewpoints. In: Proceedings of the 8th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 213–214 (1985)
Chapelle, O., Haffner, P., Vapnik, V.: SVMs for Histogram-Based Image Classification. IEEE Transactions on Neural Networks 5, 1055–1064 (1999)
Huijsmans, D.P., Sebe, N.: How to Complete Performance Graphs in Content-Based Image Retrieval: Add Generality and Normalize Scope. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 245–251 (2005)
Doloc-Mihu, A., Raghavan, V.V.: Selecting the Kernel Type for a Web-based Adaptive Image Retrieval System (AIRS). In: Internet Imaging VII, Proceedings of SPIE-IS&T Electronic Imaging, SPIE, vol. 6061 (2006)
Doloc-Mihu, A., Raghavan, V.V.: Using Score Distribution Models to Select the Kernel Type for a Web-based Adaptive Image Retrieval System (AIRS). In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, Springer, Heidelberg (2006)
Swets, J.A.: Information Retrieval Systems. Science 141, 245–250 (1963)
Manmatha, R., Feng, F., Rath, T.: Using Models of Score Distributions in Information Retrieval. In: Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–275 (2001)
Arampatzis, A., Beney, J., Koster, C., van der Weide, T.P.: Incrementally, Half-Life, and Threshold Optimization for Adaptive Document Filtering. In: The 9th Text REtrieval Conference (TREC-9) (2000)
Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)
Tipping, M.E.: The Relevance Vector Machine. Advances in Neural Information Processing Systems 12, 652–658 (2000)
Zhang, Y., Callan, J.: Maximum Likelihood Estimation for Filtering Thresholds. In: Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval (2001)
Smith, J.R.: Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression. PhD thesis, Columbia University (1997)
Heckbert, P.S.: Color Image Quantization for Frame Buffer Display. Proceedings of SIGGRAPH 16, 297–307 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doloc-Mihu, A., Raghavan, V.V. (2006). Score Distribution Approach to Automatic Kernel Selection for Image Retrieval Systems. In: Esposito, F., RaÅ›, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_27
Download citation
DOI: https://doi.org/10.1007/11875604_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45764-0
Online ISBN: 978-3-540-45766-4
eBook Packages: Computer ScienceComputer Science (R0)