Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Score Distribution Approach to Automatic Kernel Selection for Image Retrieval Systems

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4203))

Included in the following conference series:

  • 1134 Accesses

Abstract

This paper introduces a kernel selection method to automatically choose the best kernel type for a query by using the score distributions of the relevant and non-relevant images given by user as feedback. When applied to our data, the method selects the same best kernel (out of the 12 tried kernels) for a particular query as the kernel obtained from our extensive experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doloc-Mihu, A., Raghavan, V.V., Bollmann-Sdorra, P.: Color Retrieval in Vector Space Model. In: Proceedings of the 26th International ACM SIGIR Workshop on Mathematical/Formal Methods in Information Retrieval, MF/IR (2003)

    Google Scholar 

  2. Raghavan, V.V., Wong, S.K.M.: A Critical Analysis of Vector Space Model for Information Retrieval. Journal of the American Society for Information Science 37, 279–287 (1986)

    Google Scholar 

  3. Bollmann-Sdorra, P., Jochum, F., Reiner, U., Weissmann, V., Zuse, H.: The LIVE Project - Retrieval Experiments Based on Evaluation Viewpoints. In: Proceedings of the 8th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 213–214 (1985)

    Google Scholar 

  4. Chapelle, O., Haffner, P., Vapnik, V.: SVMs for Histogram-Based Image Classification. IEEE Transactions on Neural Networks 5, 1055–1064 (1999)

    Article  Google Scholar 

  5. Huijsmans, D.P., Sebe, N.: How to Complete Performance Graphs in Content-Based Image Retrieval: Add Generality and Normalize Scope. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 245–251 (2005)

    Article  Google Scholar 

  6. Doloc-Mihu, A., Raghavan, V.V.: Selecting the Kernel Type for a Web-based Adaptive Image Retrieval System (AIRS). In: Internet Imaging VII, Proceedings of SPIE-IS&T Electronic Imaging, SPIE, vol. 6061 (2006)

    Google Scholar 

  7. Doloc-Mihu, A., Raghavan, V.V.: Using Score Distribution Models to Select the Kernel Type for a Web-based Adaptive Image Retrieval System (AIRS). In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Swets, J.A.: Information Retrieval Systems. Science 141, 245–250 (1963)

    Article  Google Scholar 

  9. Manmatha, R., Feng, F., Rath, T.: Using Models of Score Distributions in Information Retrieval. In: Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 267–275 (2001)

    Google Scholar 

  10. Arampatzis, A., Beney, J., Koster, C., van der Weide, T.P.: Incrementally, Half-Life, and Threshold Optimization for Adaptive Document Filtering. In: The 9th Text REtrieval Conference (TREC-9) (2000)

    Google Scholar 

  11. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  12. Tipping, M.E.: The Relevance Vector Machine. Advances in Neural Information Processing Systems 12, 652–658 (2000)

    Google Scholar 

  13. Zhang, Y., Callan, J.: Maximum Likelihood Estimation for Filtering Thresholds. In: Proceedings of the 24th ACM SIGIR Conference on Research and Development in Information Retrieval (2001)

    Google Scholar 

  14. Smith, J.R.: Integrated Spatial and Feature Image Systems: Retrieval, Analysis and Compression. PhD thesis, Columbia University (1997)

    Google Scholar 

  15. Heckbert, P.S.: Color Image Quantization for Frame Buffer Display. Proceedings of SIGGRAPH 16, 297–307 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doloc-Mihu, A., Raghavan, V.V. (2006). Score Distribution Approach to Automatic Kernel Selection for Image Retrieval Systems. In: Esposito, F., RaÅ›, Z.W., Malerba, D., Semeraro, G. (eds) Foundations of Intelligent Systems. ISMIS 2006. Lecture Notes in Computer Science(), vol 4203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11875604_27

Download citation

  • DOI: https://doi.org/10.1007/11875604_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45764-0

  • Online ISBN: 978-3-540-45766-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics