Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Combining Visual Features for Medical Image Retrieval and Annotation

  • Conference paper
Accessing Multilingual Information Repositories (CLEF 2005)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4022))

Included in the following conference series:

Abstract

In this paper we report our work using visual feature fusion for the tasks of medical image retrieval and annotation in the benchmark of ImageCLEF 2005. In the retrieval task, we use visual features without text information, having no relevance feedback. Both local and global features in terms of both structural and statistical nature are captured. We first identify visually similar images manually and form templates for each query topic. A pre-filtering process is utilized for a coarse retrieval. In the fine retrieval, two similarity measuring channels with different visual features are used in parallel and then combined in the decision level to produce a final score for image ranking. Our approach is evaluated over all 25 query topics with each containing example image(s) and topic textual statements. Over 50,000 images we achieved a mean average precision of 14.6%, as one of the best performed runs. In the annotation task, visual features are fused in an early stage by concatenation with normalization. We use support vector machines (SVM) with RBF kernels for the classification. Our approach is trained over a 9,000 image training set and tested over the given test set with 1000 images and on 57 classes with a correct classification rate of about 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Clough, P., Sanderson, M., Müller, H.: The CLEF 2004 cross language image retrieval track. In: Peters, C., Clough, P., Jones, G., Kluck, M., Magnini, B. (eds.) Multilingual Information Access for Text, Speech and Images: Results of the Fifth CLEF Evaluation Campaign. LNCS, Springer, Heidelberg (2005)

    Google Scholar 

  2. Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 Cross–Language Image Retrieval Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Lehmann, T., Wein, B., Keysers, D., Bredno, J., Gld, M., Thies, C., Schubert, H., Kohnen, M.: Image retrieval in medical applications: The IRMA approach. In: VISIM Workshop: Information Retrieval and Exploration in Large Medical Image Collections, Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention, Utrecht, Netherland (2001)

    Google Scholar 

  4. Yang, Z., Kuo, C.C.J.: Survey on image content analysis, indexing, and retrieval techniques and status report of MEPG-7. Tamkang Journal of Science and Engineering 2, 101–118 (1999)

    Google Scholar 

  5. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: Recognition using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence 19, 711–720 (1997)

    Article  Google Scholar 

  6. Howarth, P., Yavlinsky, A., Heesch, D., Rüger, S.: Visual features for content-based medical image retrieval. In: Proceedings of Cross Language Evaluation Forum (CLEF) Workshop 2004, Bath, UK (2004)

    Google Scholar 

  7. Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K., Chevallet, J.P.: Multipre: A novel framework with multiple parallel retrieval engines for content-based image retrieval. In: ACM Multimedia 2005, Hilton, Singapore, pp. 1023–1032 (2005)

    Google Scholar 

  8. Carson, C., Belongie, S., Greenspan, H., Malik, J.: Recognition of images in large databases using color and texture. IEEE Transactions on pattern analysis and machine intelligence 24, 1026–1038 (2002)

    Article  Google Scholar 

  9. Xiong, W., Qiu, B., Tian, Q., Müller, H., Xu, C.: A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF). In: Proceedings of SPIE, vol. 5748, pp. 123–133 (2005)

    Google Scholar 

  10. Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K.: Content-based medical image retrieval using dynamically optimized regional features. In: The IEEE International Conference on Image Processing 2005, Genoa, Italy, vol. 3, pp. 1232–1235 (2005)

    Google Scholar 

  11. Alkoot, F., Kittler, J.: Experimental evaluation of expert fusion strategies. Pattern Recognition Letters 20, 1361–1369 (1999)

    Article  Google Scholar 

  12. Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Transactions on pattern analysis and machine intelligence 24, 281–286 (2002)

    Article  Google Scholar 

  13. Müller, H., GeissbMühler, A., Ruch, P.: Report on the CLEF experiments: Combining image and multi-lingual search for medical image retrieval. In: Peters, C., Clough, P., Jones, G., Kluck, M., Magnini, B. (eds.) Multilingual Information Access for Text, Speech and Images: Results of the Fifth CLEF Evaluation Campaign. LNCS, Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K. (2006). Combining Visual Features for Medical Image Retrieval and Annotation. In: Peters, C., et al. Accessing Multilingual Information Repositories. CLEF 2005. Lecture Notes in Computer Science, vol 4022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11878773_70

Download citation

  • DOI: https://doi.org/10.1007/11878773_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45697-1

  • Online ISBN: 978-3-540-45700-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics