Abstract
In this paper we report our work using visual feature fusion for the tasks of medical image retrieval and annotation in the benchmark of ImageCLEF 2005. In the retrieval task, we use visual features without text information, having no relevance feedback. Both local and global features in terms of both structural and statistical nature are captured. We first identify visually similar images manually and form templates for each query topic. A pre-filtering process is utilized for a coarse retrieval. In the fine retrieval, two similarity measuring channels with different visual features are used in parallel and then combined in the decision level to produce a final score for image ranking. Our approach is evaluated over all 25 query topics with each containing example image(s) and topic textual statements. Over 50,000 images we achieved a mean average precision of 14.6%, as one of the best performed runs. In the annotation task, visual features are fused in an early stage by concatenation with normalization. We use support vector machines (SVM) with RBF kernels for the classification. Our approach is trained over a 9,000 image training set and tested over the given test set with 1000 images and on 57 classes with a correct classification rate of about 80%.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Clough, P., Sanderson, M., Müller, H.: The CLEF 2004 cross language image retrieval track. In: Peters, C., Clough, P., Jones, G., Kluck, M., Magnini, B. (eds.) Multilingual Information Access for Text, Speech and Images: Results of the Fifth CLEF Evaluation Campaign. LNCS, Springer, Heidelberg (2005)
Clough, P., Müller, H., Deselaers, T., Grubinger, M., Lehmann, T.M., Jensen, J., Hersh, W.: The CLEF 2005 Cross–Language Image Retrieval Track. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 535–557. Springer, Heidelberg (2006)
Lehmann, T., Wein, B., Keysers, D., Bredno, J., Gld, M., Thies, C., Schubert, H., Kohnen, M.: Image retrieval in medical applications: The IRMA approach. In: VISIM Workshop: Information Retrieval and Exploration in Large Medical Image Collections, Fourth International Conference on Medical Image Computing and Computer-Assisted Intervention, Utrecht, Netherland (2001)
Yang, Z., Kuo, C.C.J.: Survey on image content analysis, indexing, and retrieval techniques and status report of MEPG-7. Tamkang Journal of Science and Engineering 2, 101–118 (1999)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: Recognition using class specific linear projection. IEEE Transactions on pattern analysis and machine intelligence 19, 711–720 (1997)
Howarth, P., Yavlinsky, A., Heesch, D., Rüger, S.: Visual features for content-based medical image retrieval. In: Proceedings of Cross Language Evaluation Forum (CLEF) Workshop 2004, Bath, UK (2004)
Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K., Chevallet, J.P.: Multipre: A novel framework with multiple parallel retrieval engines for content-based image retrieval. In: ACM Multimedia 2005, Hilton, Singapore, pp. 1023–1032 (2005)
Carson, C., Belongie, S., Greenspan, H., Malik, J.: Recognition of images in large databases using color and texture. IEEE Transactions on pattern analysis and machine intelligence 24, 1026–1038 (2002)
Xiong, W., Qiu, B., Tian, Q., Müller, H., Xu, C.: A novel content-based medical image retrieval method based on query topic dependent image features (QTDIF). In: Proceedings of SPIE, vol. 5748, pp. 123–133 (2005)
Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K.: Content-based medical image retrieval using dynamically optimized regional features. In: The IEEE International Conference on Image Processing 2005, Genoa, Italy, vol. 3, pp. 1232–1235 (2005)
Alkoot, F., Kittler, J.: Experimental evaluation of expert fusion strategies. Pattern Recognition Letters 20, 1361–1369 (1999)
Kuncheva, L.I.: A theoretical study on six classifier fusion strategies. IEEE Transactions on pattern analysis and machine intelligence 24, 281–286 (2002)
Müller, H., GeissbMühler, A., Ruch, P.: Report on the CLEF experiments: Combining image and multi-lingual search for medical image retrieval. In: Peters, C., Clough, P., Jones, G., Kluck, M., Magnini, B. (eds.) Multilingual Information Access for Text, Speech and Images: Results of the Fifth CLEF Evaluation Campaign. LNCS, Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xiong, W., Qiu, B., Tian, Q., Xu, C., Ong, S.H., Foong, K. (2006). Combining Visual Features for Medical Image Retrieval and Annotation. In: Peters, C., et al. Accessing Multilingual Information Repositories. CLEF 2005. Lecture Notes in Computer Science, vol 4022. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11878773_70
Download citation
DOI: https://doi.org/10.1007/11878773_70
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-45697-1
Online ISBN: 978-3-540-45700-8
eBook Packages: Computer ScienceComputer Science (R0)