Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4123))

Abstract

In this paper, we discuss a general notion of similarity function between two sequences which is based on their common subsequences. This notion arises in some applications of molecular biology [14]. We introduce the concept of similarity codes and study the logarithmic asymptotics for the size of optimal codes. Our mathematical results announced in [13] correspond to the longest common subsequence (LCS) similarity function [2] which leads to a special subclass of these codes called reverse-complement (RC) similarity codes. RC codes for additive similarity functions have been studied in previous papers [9,10,11,12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Massey, J.L.: Reversible codes. Information and Control 7, 369–380 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  2. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. J. Soviet Phys.—Doklady 10, 707–710 (1966)

    MathSciNet  Google Scholar 

  3. Levenshtein, V.I.: Elements of coding theory (in Russian). In: Discrete Mathematics and Mathematical Problems of Cybernetics, Moscow, Nauka, pp. 207–305 (1974)

    Google Scholar 

  4. McEliece, R.J., Rodemich, E.R., Rumsey Jr., H., Welch, L.R.: New upper bounds on the rate of a code via the Delsarte—MacWilliams inequalities. IEEE Trans. Inform. Theory 23(2), 157–166 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  5. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1977)

    MATH  Google Scholar 

  6. Breslauer, K.J., Frank, R., Blöcker, H., Marky, L.A.: Predicting DNA duplex stability from the base sequence. Proc. Nat. Acad. Sci. USA (Biochemistry) 83, 3746–3750 (1986)

    Article  Google Scholar 

  7. Waterman, M.S. (ed.): Mathematical Methods for DNA Sequences. CRC Press, Inc., Boca Raton, Florida (1989)

    MATH  Google Scholar 

  8. Dancik, V.: Expected length of longest common subsequences, Ph.D. dissertation, University of Warwick (1994)

    Google Scholar 

  9. D’yachkov, A.G., Torney, D.C.: On similarity codes. IEEE Trans. Inform. Theory 46(4), 1558–1564 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. D’yachkov, A.G., Torney, D.C., Vilenkin, P.A., White, P.S.: Reverse–complement similarity codes for DNA sequences. In: Proc. of ISIT–2000, Sorrento, Italy (July 2000)

    Google Scholar 

  11. Vilenkin, P.A.: Some asymptotic problems of combinatorial coding theory and information theory (in Russian), Ph.D. dissertation, Moscow State University (2000)

    Google Scholar 

  12. Rykov, V.V., Macula, A.J., Korzelius, C.M., Engelhart, D.C., Torney, D.C., White, P.S.: DNA sequences constructed on the basis of quaternary cyclic codes. In: Proc. of 4-th World Multiconference on Systemics, Cybernetics and Informatics, Orlando, Florida, USA (July 2000)

    Google Scholar 

  13. D’yachkov, A.G., Torney, D.C., Vilenkin, P.A., White, P.S.: On a class of codes for the insertion-deletion metric. In: Proc. of ISIT–2002, Lausanne, Switzerland (July 2002)

    Google Scholar 

  14. D’yachkov, A.G., Erdos, P.L., Macula, A.J., Rykov, V.V., Torney, D.C., Tung, C.-S., Vilenkin, P.A., White, P.S.: Exordium for DNA codes. Journal of Combinatorial Optimization 7(4) (2003)

    Google Scholar 

  15. D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Torney, D.C.: A weighted insertion–deletion stacked pair thermodynamic metric for DNA codes. In: The Tenth International Meeting on DNA Computing, Milano-Bicocca, Italy (2004)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

D’yachkov, A., Torney, D., Vilenkin, P., White, S. (2006). Reverse–Complement Similarity Codes. In: Ahlswede, R., et al. General Theory of Information Transfer and Combinatorics. Lecture Notes in Computer Science, vol 4123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11889342_52

Download citation

  • DOI: https://doi.org/10.1007/11889342_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46244-6

  • Online ISBN: 978-3-540-46245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics