Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Incorporating Inference into Evolutionary Algorithms for Max-CSP

  • Conference paper
Hybrid Metaheuristics (HM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4030))

Included in the following conference series:

Abstract

This paper presents a simple way of combining inference with stochastic search for solving constraint satisfaction problems. The approach makes use of an evolutionary algorithm for search assisted by an inference algorithm, the variable elimination procedure. The hybrid algorithm obtained is adapted in such way that a balance between exploitation and exploration is preserved. The results are presented for the Max-CSP optimization task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)

    Google Scholar 

  2. Michalewicz, Z.: A survey of constraint handling techniques in evolutionary computation methods. In: Proceedings of the 4th Anual Conference on Evolutionary Programming, pp. 135–155 (1995)

    Google Scholar 

  3. Dozier, G., Bowen, J., Bahler, D.: Solving small and large constraint satisfaction problems using a heuristic-based microgenetic algorithm. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 306–311 (1994)

    Google Scholar 

  4. Paredis, J.: Coevolutionary constraint satisfaction. In: Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, vol. 866, pp. 46–55 (1994)

    Google Scholar 

  5. Eiben, A.E., Ruttkay, Z.: Self-adaptivity for constraint satisfaction: Learning penalty functions. In: Proceedings of the 3rd IEEE Conference on Evolutionary Computation, pp. 258–261 (1996)

    Google Scholar 

  6. Craenen, B.G.W., Eiben, A.E., van Hemert, J.I.: Comparing Evolutionary Algorithms on Binary Constraint Satisfaction Problems. IEEE Transactions on Evolutionary Computation 7(5), 424–444 (2003)

    Article  Google Scholar 

  7. Eiben, A.E., Raue, P.-E., Ruttkay, Z.: Solving constraint satisfaction problems using genetic algorithms. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation, pp. 542–547 (1994)

    Google Scholar 

  8. Marchiori, E., Steenbeek, A.: A Genetic Local Search Algorithm for Random Binary Constraint Satisfaction Problems. In: Proceedings of the 14th Annual Symposium on Applied Computing, pp. 458–462 (2000)

    Google Scholar 

  9. Kask, K., Dechter, R.: New Search Heuristics for Max-CSP. Principles and Practice of Constraint Programming, 262-277 (2000)

    Google Scholar 

  10. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence 113, 41–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the ACM 50(2), 107–153 (2003)

    Article  MathSciNet  Google Scholar 

  12. Michalewicz, Z.: Genetic Algorithms + Data structures = Evolution programs, 3rd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  13. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary computation: a survey. In: Proceedings of the 4th IEEE Conference on Evolutionary Computation, pp. 65–69 (1997)

    Google Scholar 

  14. Morris, P.: The breakout method for escaping from local minima. Proceedings of the 11th National Conference on Artificial In- telligence, AAAI (1993) 40-45

    Google Scholar 

  15. Smith, B.: Phase transition and the mushy region in constraint satisfaction. In: Proceedings of the 11th ECAI, pp. 100–104 (1994)

    Google Scholar 

  16. Larossa, J., Meseguer, P.: Partial Lazy Forward Checking for MAX-CSP. In: Proceedings of the 13th European Conference on Artificial Intelligence, pp. 229–233 (1998)

    Google Scholar 

  17. Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D., Molloy, M.S.O., Stamatiou, Y.C.: Random constraint satisfaction: A more accurate picture. Constraints 4(6), 329–344 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ionita, M., Croitoru, C., Breaban, M. (2006). Incorporating Inference into Evolutionary Algorithms for Max-CSP. In: Almeida, F., et al. Hybrid Metaheuristics. HM 2006. Lecture Notes in Computer Science, vol 4030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11890584_11

Download citation

  • DOI: https://doi.org/10.1007/11890584_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46384-9

  • Online ISBN: 978-3-540-46385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics