Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization

  • Conference paper
Hybrid Metaheuristics (HM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4030))

Included in the following conference series:

Abstract

Deoxyribonucleic acid (DNA) sequencing is an important task in computational biology. In recent years the specific problem of DNA sequencing by hybridization has attracted quite a lot of interest in the optimization community. This led to the development of several metaheuristic approaches such as tabu search and evolutionary algorithms. In this work we propose an ant colony algorithm to resolve this problem. In addition, we apply our algorithm within a multi-level framework which helps in significantly reducing the computation time. The results show that our algorithm is currently among the state-of-the-art methods for this problem.

This work was supported by the Spanish CICYT project OPLINK (grant TIN-2005-08818-C04-01), and by the “Juan de la Cierva” program of the Spanish Ministry of Science and Technology of which Christian Blum is a post-doctoral research fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bains, W., Smith, G.C.: A novel method for nucleid acid sequence determination. Journal of Theoretical Biology 135, 303–307 (1988)

    Article  Google Scholar 

  2. Błażewicz, J., Formanowicz, P., Guinand, F., Kasprzak, M.: A heuristic managing errors for DNA sequencing. Bioinformatics 18(5), 652–660 (2002)

    Article  Google Scholar 

  3. Błażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.: DNA sequencing with positive and negative errors. Journal of Computational Biology 6, 113–123 (1999)

    Article  Google Scholar 

  4. Błażewicz, J., Formanowicz, P., Kasprzak, M., Markiewicz, W.T., Weglarz, J.: Tabu search for DNA sequencing with false negatives and false positives. European Journal of Operational Research 125, 257–265 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Błażewicz, J., Glover, F., Kasprzak, M.: DNA sequencing—Tabu and scatter search combined. INFORMS Journal on Computing 16(3), 232–240 (2004)

    Article  MathSciNet  Google Scholar 

  6. Błażewicz, J., Glover, F., Kasprzak, M.: Evolutionary approaches to DNA sequencing with errors. Annals of Operations Research 138, 67–78 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Błażewicz, J., Kasprzak, M., Kuroczycki, W.: Hybrid genetic algorithm for DNA sequencing with errors. Journal of Heuristics 8, 495–502 (2002)

    Article  MATH  Google Scholar 

  8. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)

    Article  Google Scholar 

  9. Blum, C., Yábar Vallès, M.: New constructive heuristics for DNA sequencing by hybridization. Technical Report LSI-06-23-R, LSI, Universitat Politècnica de Catalunya, Barcelona, Spain (2006)

    Google Scholar 

  10. Brizuela, C.A., González, L.C., Romero, H.J.: An improved genetic algorithm for the sequencing by hybridization problem. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 11–20. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Bui, T.N., Youssef, W.A.: An enhanced genetic algorithm for DNA sequencing by hybridization with positive and negative errors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 908–919. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Boston (2004)

    Book  MATH  Google Scholar 

  13. Drmanac, R., Labat, I., Brukner, R., Crkvenjakov, R.: Sequencing of megabase plus DNA by hybridization: Theory of the method. Genomics 4, 114–128 (1989)

    Article  Google Scholar 

  14. Endo, T.A.: Probabilistic nucleotide assembling method for sequencing by hybridization. Bioinformatics 20(14), 2181–2188 (2004)

    Article  Google Scholar 

  15. Fernandes, E.R., Ribeiro, C.C.: Using an adaptive memory strategy to improve a multistart heuristic for sequencing by hybridization. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 4–15. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Idury, R.M., Waterman, M.S.: A new algorithm for DNA sequence assembly. Journal of Computational Biology 2(2), 291–306 (1995)

    Article  Google Scholar 

  17. Lysov IuP, Y.P., Florentiev, V.L., Khorlin, A.A., Khrapko, K.R., Shik, V.V.: Determination of the nucleotide sequence of DNA using hybridization with oligonucleotides. a new method. Doklady Akademii nauk SSSR 303, 1508–1511 (1988)

    Google Scholar 

  18. Pevzner, P.A.: l-tuple DNA sequencing: Computer analysis. Journal of Biomulecular Structure and Dynamics 7, 63–73 (1989)

    Google Scholar 

  19. Walshaw, C.: Multilevel refinement for combinatorial optimization problems. Annals of Operations Research 131 (2004)

    Google Scholar 

  20. Walshaw, C., Cross, M.: Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM Journal on Scientific Computing 22(1), 63–80 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blum, C., Vallès, M.Y. (2006). Multi-level Ant Colony Optimization for DNA Sequencing by Hybridization. In: Almeida, F., et al. Hybrid Metaheuristics. HM 2006. Lecture Notes in Computer Science, vol 4030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11890584_8

Download citation

  • DOI: https://doi.org/10.1007/11890584_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46384-9

  • Online ISBN: 978-3-540-46385-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics