Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Iterative Bayesian Network Implementation by Using Annotated Association Rules

  • Conference paper
Managing Knowledge in a World of Networks (EKAW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4248))

Abstract

This paper concerns the iterative implementation of a knowledge model in a data mining context. Our approach relies on coupling a Bayesian network design with an association rule discovery technique. First, discovered association rule relevancy isenhanced by exploiting the expert knowledge encoded within a Bayesian network, i.e., avoiding to provide trivial rules w.r.t. known dependencies. Moreover, the Bayesian network can be updated thanks to an expert-driven annotation process on computed association rules. Our approach is experimentally validated on the Asia benchmark dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)

    Google Scholar 

  2. Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by means of free-sets. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 75–85. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery 7(1), 5–22 (2003)

    Article  MathSciNet  Google Scholar 

  5. Liu, B., Hsu, W., Mun, L.F., Lee, H.: Finding interesting patterns using user expectations. IEEE Transactions on Knowledge and Data Engineering 11(6), 817–832 (1999)

    Article  Google Scholar 

  6. Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using bayesian networks as background knowledge. In: Proceedings ACM SIGKDD 2004, pp. 178–186. ACM Press, New York (2004)

    Google Scholar 

  7. Fauré, C., Delprat, S., Mille, A., Boulicaut, J.F.: Utilisation des réseaux bayésiens dans le cadre de l‘extraction de rg̀les d‘association (in french). In: Proceedings EGC 2006, Lille, F, Cepadues pp. 569–580 (2006)

    Google Scholar 

  8. Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings KDD 1998, New York, USA, pp. 94–100. AAAI Press, Menlo Park (1998)

    Google Scholar 

  9. Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings ACM SIGKDD 2000, Boston, USA, pp. 54–63. ACM Press, New York (2000)

    Google Scholar 

  10. Jaroszewicz, S., Scheffer, T.: Fast discovery of unexpected patterns in data, relative to a bayesian network. In: Proceedings ACM SIGKDD 2005, Chicago, USA, pp. 118–127. ACM Press, New York (2005)

    Google Scholar 

  11. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  12. Druzdzel, M.J., Diez, F.: Criteria for combining knowledge from different sources in probabilistic networks (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fauré, C., Delprat, S., Boulicaut, JF., Mille, A. (2006). Iterative Bayesian Network Implementation by Using Annotated Association Rules. In: Staab, S., Svátek, V. (eds) Managing Knowledge in a World of Networks. EKAW 2006. Lecture Notes in Computer Science(), vol 4248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11891451_29

Download citation

  • DOI: https://doi.org/10.1007/11891451_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46363-4

  • Online ISBN: 978-3-540-46365-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics