Abstract
This paper concerns the iterative implementation of a knowledge model in a data mining context. Our approach relies on coupling a Bayesian network design with an association rule discovery technique. First, discovered association rule relevancy isenhanced by exploiting the expert knowledge encoded within a Bayesian network, i.e., avoiding to provide trivial rules w.r.t. known dependencies. Moreover, the Bayesian network can be updated thanks to an expert-driven annotation process on computed association rules. Our approach is experimentally validated on the Asia benchmark dataset.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., Lakhal, L.: Mining minimal non-redundant association rules using frequent closed itemsets. In: Palamidessi, C., Moniz Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey, P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 972–986. Springer, Heidelberg (2000)
Boulicaut, J.F., Bykowski, A., Rigotti, C.: Approximation of frequency queries by means of free-sets. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 75–85. Springer, Heidelberg (2000)
Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery 7(1), 5–22 (2003)
Liu, B., Hsu, W., Mun, L.F., Lee, H.: Finding interesting patterns using user expectations. IEEE Transactions on Knowledge and Data Engineering 11(6), 817–832 (1999)
Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using bayesian networks as background knowledge. In: Proceedings ACM SIGKDD 2004, pp. 178–186. ACM Press, New York (2004)
Fauré, C., Delprat, S., Mille, A., Boulicaut, J.F.: Utilisation des réseaux bayésiens dans le cadre de l‘extraction de rg̀les d‘association (in french). In: Proceedings EGC 2006, Lille, F, Cepadues pp. 569–580 (2006)
Padmanabhan, B., Tuzhilin, A.: A belief-driven method for discovering unexpected patterns. In: Proceedings KDD 1998, New York, USA, pp. 94–100. AAAI Press, Menlo Park (1998)
Padmanabhan, B., Tuzhilin, A.: Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings ACM SIGKDD 2000, Boston, USA, pp. 54–63. ACM Press, New York (2000)
Jaroszewicz, S., Scheffer, T.: Fast discovery of unexpected patterns in data, relative to a bayesian network. In: Proceedings ACM SIGKDD 2005, Chicago, USA, pp. 118–127. ACM Press, New York (2005)
Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)
Druzdzel, M.J., Diez, F.: Criteria for combining knowledge from different sources in probabilistic networks (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fauré, C., Delprat, S., Boulicaut, JF., Mille, A. (2006). Iterative Bayesian Network Implementation by Using Annotated Association Rules. In: Staab, S., Svátek, V. (eds) Managing Knowledge in a World of Networks. EKAW 2006. Lecture Notes in Computer Science(), vol 4248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11891451_29
Download citation
DOI: https://doi.org/10.1007/11891451_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-46363-4
Online ISBN: 978-3-540-46365-8
eBook Packages: Computer ScienceComputer Science (R0)